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Abstract. In this paper we give a representation-independent topological defi-
nition of crossover that links it tightly to the notion of fitness landscape. Build-
ing around this definition, a geometric/topological framework for evolutionary
algorithms is introduced that clarifies the connection between representation,
genetic operators, neighbourhood structure and distance in the landscape. Tra-
ditional genetic operators for binary strings are shown to fit the framework. The
advantages of this interpretation are discussed

1 Introduction

Fitness landscapes and genetic operators have been studied for considerable time in
connection with evolutionary algorithms. However, a unifying theory of the two is
missing and many questions about their relationship remain unanswered. Below we
will briefly analyze the current situation in this respect.

Fitness landscapes and genetic operators are undoubtedly connected. Mutation is
intuitively associated with the neighbourhood structure of the search space. However,
the connection between landscape and crossover is less clear. Complicated topological
structures, hyper-neighbourhoods, have been proposed [Culberson, 1995; Jones, 1995;
Gitchoff & Wagner, 1996; Reidys & Stadler, 2002] to formally link crossover to fit-
ness landscapes. However, even using these ideas, effectively one is left with a differ-
ent landscape for each operator [Culberson, 1995], which is deeply unsatisfactory.
Important questions then are: is there an easier way of interpreting crossover in con-
nection to fitness landscapes? Are crossover and mutation really unrelated?

An established way of defining a fitness landscape for search spaces where a natu-
ral notion of distance exists is to imagine that the neighbourhood of each point in-
cludes the points that are at minimum distance from that point [Back et al, 1997].
Once a landscape is defined, typically the notion of distance is not used further.
Couldn’t distance play a much more important role in explaining the relationship
between landscapes and crossover?

Local search and many other meta-heuristics are naturally defined over the
neighbourhood structure of the search space [Glover, 2002]. However, a peculiarity of
evolutionary algorithms (seen as meta-heuristics) is that the neighbourhood structure
over the search space is specified by the way genetic operators act on the representa-



tion for solutions. One may wonder whether it is possible to naturally reconcile these
two ways of defining structure over the search space.

Yet in another sense, solution representation and neighbourhood structure are just
two different perspectives on the solution space. An example is the classical binary
string representation and its geometric dual, a hypercube, which has been extremely
useful in explaining genetic algorithms [Whitley, 1994]. Can solution representation
and neighbourhood structure be two sides of the same coin for other representations,
like permutation lists or syntax trees?

The traditional mutation and crossover operators defined for binary strings have
been extended to other representations [Langdon & Poli, 2002]. Also, there are gen-
eral guidelines for the design of such operators for representations other than binary
[Radcliffe, 1994; Surry, 1998]. Is there a way to rigorously define, rather than design
or extend, mutation and crossover in general, independently of the representation
adopted?

Except for solution representations, many evolutionary algorithms are very similar
which suggests that unification might be possible [Stephens & Poli, 2004]. Are all
evolutionary algorithms really the same algorithm in some sense?

In this paper we clarify the connection between representation, genetic operators,
neighbourhood structure and distance and we propose a new answer to the previous
questions. The results of our work are surprising: all the previous questions are con-
nected, and that the central question to address is really only one: what is crossover?

The paper is organized as follows. In section 2, we introduce some necessary defi-
nitions. Geometric/topological definitions of crossover and mutation are given in
section 3, where we also prove some properties of these operators. As an example, in
section 4, we show how traditional mutation and crossover defined over binary strings,
fit our general topological definitions for mutation and crossover. In section 5, we
discuss some implications of our topological interpretation of crossover. Finally, in
section 6, we draw some conclusions and we indicate our future research directions.

2 Preliminary definitions

2.1 Search problem

Let S denote the solution set' comprising all the candidate solutions to a given
search problem P. The members of this set must be seen as formal solutions not relay-
ing on any specific underlying representation.

The goal of a search problem P is to find specific solution/s in the search space that
maximize (minimize) an objective function:

g:S—>R

' We distinguish between solution set and solution space. The first refers to a collection of
elements, while the second implies a structure over the elements.



Let us assume, without loss of generality, that the goal of the search problem P is to
maximize g. The global optima x* are points in S for which g is a maximum:
x*e S* o g(x*) = max g(x)

Notice that global optima are well defined when the objective function is well de-
fined and are independent of any structure defined on S. On the contrary, local optima
are definable only when a structure over S is defined. A search problem in itself does
not come with any predefined structure over the solution set.

2.2 Fitness landscape

A configuration space C is a pair (G, Nhd) where G is a set of syntactic configura-
tions (syntactic objects or genotypes) and Nhd : G — 2 is a syntactic neighbourhood
function which maps every configuration in C to the set of all its neighbour configura-
tions in C which can be obtained by applying a unitary syntactic modification opera-
tor. The unitary syntactic modification operator must be reversible (i.e.
y€ Nhd(x) & xe Nhd(y)) and connected (any configuration can be transformed

into any other by applying the operator a finite number of times). Notice that a con-
figuration set may lead to more than one configuration space if multiple syntactic
neighbourhood functions are available.

A configuration space C=(G, Nhd) is said to be a space endowed with a neighbour-
hood structure. This is induced by the syntax of the configurations and the particular
notion of syntactic neighbourhood function adopted. Such a neighbourhood structure
can be associated with an undirected neighbourhood graph W= (V, E), where V is the
set of vertices representing configurations and E is the set of edges representing the
relationship of neighbourhood between configurations.

Since the neighbourhood is symmetric (ye Nhd(x) < xe€ Nhd(y)) and the
neighbourhood structure is connected, this space is also a metric space provided with
a distance function d induced by the neighbourhood function (see formal definition
below) [Back et al, 1997]. So, we can equivalently write C=(G, Nhd) or C=(G, d).
However, we must keep in mind that the notion of distance in the metric space of
syntactic configurations has a syntactic nature (and, therefore, may have special fea-
tures other than respecting distance axioms). Distances arising from graphs are known
as graphic distances [Van der Vel, 1993].

Formally, a metric space (M, d) is a set M provided with a metric or distance d that
is a real-valued map on M xM which fulfils the following axioms for all s,,s, € M :

1. d(s,,s,)>0 and d(s,,s,) =0 ifand only if 5, =, ;
2. d(s,.s,) =d(s,,s,) i.. d is symmetric; and
3. d(s,,s;) <d(s,,s,)+d(s,,s,) 1.e. d satisfies the triangle inequality.
A representation mapping is a function r:G — S associating any syntactic

configuration in G with a formal solution in S. Ideally this mapping would be
bijective. However, there are cases where the sizes of G and S differ.



A fitness landscape F is a pair (C, f) where C=(G, d) is a configuration space and
f:G — R is a fitness function mapping a syntactic configuration to its fitness value.

The fitness value is a positive real number. It may or may not coincide with the objec-
tive function value of the solution represented by the input genotype. For the sake of
simplicity, we assume that it is. Therefore, the fitness function is the composition of
the representation mapping r with the objective function g: f = gor.

2.3. Topological and geometric preliminaries: balls and segments

In a metric space (S,d) a closed ball is the set of the form
B(x;y)={ye S1d(x,y)<r}wherexe S and ris a positive real number called
the radius of the ball. A line segment (or closed interval) is the set of the form
[x;yl={ze S1d(x,z)+d(z,y)=4d(x,y)} wherex, ye S are called extremes
of the segment. Note that [x; y]=[y;x]. The length [ of the segment [x; y] is the
distance between a pair of extremes/([x;y]) = d (x,y) . Let H be a segment and
x € H is an extreme of H, there exists only one point y € H , its conjugate extreme,
such as [x; y] = H . Examples of balls and segments for different spaces are shown

in Figure 1. Note how the same set can have different geometries (see Euclidean and
Manbhattan spaces) and how segments can have more than a pair of extremes. E.g. in
the Hamming space, a segment coincides with a hypercube and the number of ex-
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tremes varies with the length of the segment, while in the Manhattan space, a segment
is a rectangle and it has two pairs of extremes. Also, a segment is not necessarily
“slim”, it may include points that are not on the boundaries. Finally, a segment does
not coincide with a shortest path connecting its extremes (geodesic). In general, there
may be more than one geodesic connecting two extremes.

3. Topological genetic operators

We define, postponing the justifications of these definitions to the discussion, two
classes of operators in the landscape (i.e. using the notion of distance coming with the
landscape): topological mutation and topological crossover. Within these classes, we
identify two specific operators: topological uniform mutation and topological uniform
crossover. These definitions are representation-independent and therefore the opera-
tors are well-defined for any representation.

A g-ary genetic operator OP takes g parents p, p,,...p, and produces one off-

spring ¢ according to a given conditional probability distribution:
Pr{OP(p,, pys--p,) =c}=Pr{OP=cl P =p, P, =p, ... ”, = p,} = fop(cl p;, PyseP,)

Mutation is a unary operator while crossover is typically a binary operator.

Definition 1 The image set of a genetic operator OP is the set of all possible offspring

produced by OP when the parents are p,, PyreDy with non-zero probability:

Im[OP(p,, pys-p )] ={ce S| fop(cl py, pysep,) > 0}
Notice that the image set is a mapping from a vector of parents to a set of offspring.
Definition 2 A wunary operator M is a topological e-mutation operator if
Im[M (p)] < B(p;€) where ¢ is the smallest real for which this condition holds true.

In other words, in a topological e-mutation all offspring are at most ¢ away from their
parent.

Definition 3 A binary operator CX is a topological crossover if
Im[CX (p, )l < [p:p,]-

This simply means that in a topological crossover offspring lay between parents. We
use the term recombination as a synonym of any binary genetic operator.

We now introduce two specific operators belonging to the families defined above.
Definition 4 Topological uniform e-mutation UM is a topological e-mutation where

all z at most € away from parent x have the same probability of being the offspring:
d(z€ B(x,¢€))

| B(x,€) 1
Im[UM,(x)]={ze S| f,,,(z1x) >0} = B(x,€)

Jome (@1 x)=Pr{UM =z P=x}=

where Jis a function which returns 1 if the argument is true , 0 otherwise.
When ¢ is not specified, we mean € = 1.



Definition 5 Topological uniform crossover UX is a topological crossover where all z
laying between parents x and y have the same probability of being the offspring:

_Szelxy)
[[x, y]1
Im[UX (x, y)]={z€ S| fyx(zlx,¥) >0} =[x, y]-

Theorem 1 The structure over the configuration space C can equivalently be defined
by the set G of the syntactic configurations and one of the following objects: 1. The
neighborhood function Nhd, 2. The neighborhood graph W= (V, E), 3. The graphic
distance function d, 4. Uniform topological mutation UM, 5. Uniform topological
crossover UX, 6. The set of all balls B, 7. The set of all segments H.

Proof.

Equivalences 1, 2 and 3 are trivial consequences of the fitness landscape definition.
Equivalence 4: given UM one has its conditional density function f,, (z|x) and,

Sux (21 x,y) =Pr{UX = z| P1=x,P2 =y}

consequently, the image set mapping Im[{UM(x)], i.e. the mapping x > B(x,1). The
structure of the space is therefore given by Nad : x — (B(x,1)\{x}) .
Equivalence 5: analogously, given UX one has the mapping (x,y) > [x;y]. By

restricting this mapping through its co-domain considering only segments of size 2,
the corresponding restricted domain coincides with the set of edges E of the neighbor-
hood graph, hence the structure of the space is determined.

Equivalence 6: the relation of inclusion between sets Cinduces a partial order in B.
The set of all balls of radius 1 B, can be determined by considering all those balls in

B that have, as only predecessors, balls of size 1 (i.e. balls of radius zero). Given a
ball pe B, a point xeb is the center of the ball if and only if

Vx'e (b\{x})3b’e B,:b# b’ A x,x e b’".> Knowing the center of each ball of
radius 1, it is possible to form the map x > B(x,1) and proceed as in equivalence 4.

Equivalence 7: by considering only segments in H of size 2, one can form the set E of
the edges of the neighborhood graph; hence, the structure of the space is determined.m
Corollary 1 Uniform topological mutation UM and uniform topological crossover UX
are isomorphic.

Proof.

Since both UM and UX identify the structure of the configuration space univocally and
also the configuration space structure identify both operators univocally then they are
isomorphic.m

Corollary 2 Given a structure of the configuration search space in terms of neighbor-
hood function or graphic distance function, UM and UX are unique.

Proof.

2 Given two different points in the same ball of radius 1 x, x"€ b , they are either at distance 1
or distance 2. If they are at a distance 2, b is the only ball in B satisfying this condition
since the two points are extremes of a diameter of the ball b and identify the ball univocally.
If they are at a distance 1, there must exist at least two balls in B, containing X, x" one in
which one is the center and the other is not, and another one in which the roles are reversed;
this symmetry holds because the neighborhood is symmetric.



This follows trivially from the definition of UM and UX over the space structure. m
Corollary 3 Given a representation, there are as many UM and UX operators as
notions of graphic/syntactic distance for the representation.

Proof.

Given a representation, one has a configuration set for which the structure is not speci-
fied. A specific notion of graphic distance transforms the set into a space with a struc-
ture. Given such a structure, UM and UX are unique (corollary 2). m

5. Generalization of binary string crossover

Given two binary strings 5, = (X0 X,) and S5 = (Vi V) of length n, the
Hamming distance d (s,,s,) is the number of places in which the two strings dif-

fer, i.e.
dy(s,,s,)= ié‘(x,. £Yy,)

A property of the Hamming distance is th;1t1 a binary string s, = (z,,..., z, ) lays be-
tween s, and s, if and only if every bit of s, equals al least one of the corresponding
bitsof s ands,,ie. Vi:z, e {x,,y,} © s € [s,,5,]-

Traditional (one-point, two-point, uniform, etc.) crossovers for binary strings be-

long to the class of mask-based crossover operators [Syswerda, 1989]. A crossover
operator is a probabilistic mapping c¢x, : § x § —%— § where the mask m is a

random variable with different probability distributions for different crossover opera-
tors. The mask m takes the form of a binary string of length n that specifies for each
position from which parent to copy the corresponding bit to the offspring, i.e.
cx,, (s,,8,)=s,and m = (m,,..., m,) then z, = x, - §(m, =0)+y,-8(m, =1) .
Theorem 2 All mask-based crossover operators for binary strings are topological
crossovers. All mutations for binary strings are topological &-mutations.
Proof.

We need to show that for any probability distribution over m it holds
Im[cx, (s,,5,)] < [s,,5,]. Out of all possible mask-based crossovers, those with a

non-zero probability of using all the 2" masks produce the biggest image set for any
given pair of parents. Formally, this is given by Im[cx(s,,s,)] = {cx,,(s,,5,) |lme B"}-

So, it is sufficient to prove that Im[cx(s,,s,)] < [s,,s,] for this image set. This is
equivalent to prove thatvm e B" : sy =cx,(5,5,) = s;€[s,,5,]-

Givens, =(x,,..,x,)> 8, =(y,-..,y,) and any mask m there exists a unique
§3=(2,5...,2,) From the definition of mask-based crossover it follows that
Vi:z; € {x,,y,}. Then, from the Hamming distance property mentioned above, it
follows thatv s : s e [s,,5,1; which completes the proof of the first part of the

theorem.



Let s, = u(s,) be the result of mutating s, that is s, e Im[ u(s,)], then
Je:Vs, :d, (s,,s,) < € whereby s, € B(s,,&) with € being the smallest possible. m
Theorem 3. The topological uniform crossover for the configuration space of binary
strings endowed with Hamming distance is the traditional uniform crossover. The
topological uniform I-mutation for the configuration space of binary strings endowed
with Hamming distance is equivalent to a zero-or-one-bit mutation.

Proof.

Let us start by proving that the image sets of traditional uniform crossover and topo-
logical uniform crossover coincide. We need to show that Im[cx(s,,s,)]=[s,,s,].
where Im[cx(s,,s,)] was defined in the proof of theorem 2, from which we know that
Im[cx(s,,s,)] < [s,,5,]- Consequently, all we need to prove is that
Vsye [s,,8,]—> Ime B" :cx, (s,,8,) = s, For the Hamming distance prop-
erty this is equivalent to say Vs,Vi:z, e {x,,y,} = Ime B" :cx, (5,,5,) = 55>
where z; are the bits of s;. From the definition of crossover this is equivalent to prov-
ing that Vs,Vi:z, e {x;,,y;,} >3Ime B":z, =x,-6(m, =0)+y,-d(m, =1).
This is true because it always exists at least a mask for which when the bits in the
parents differ, it specifies the parent for which the bit equals the offspring bit. If the
bits do not differ, the mask indifferently specifies one parent or the other for that bit.
This shows that the image sets of traditional uniform crossover and topological uni-
form crossover coincide.

Every element of the image set of the traditional uniform crossover has identical
probability of being the offspring [Whitley, 1994] and the same is true for the ele-
ments of the image set of the topological uniform crossover (by definition). This com-
pletes the proof of the first part of this theorem.

Let us now consider the zero-or-one-bit mutation. This is an operator where a string
is either mutated by flipping one bit or is not mutated with equal probability. The
image sets of this mutation and topological 1-mutation coincide as it is trivial to see by
noting that the Hamming ball of radius 1, which is the image set of topological 1-
mutation, coincides with the image set of the zero-or-one-bit mutation. Every element
of the image set of zero-or-one-bit mutation has identical probability of being the
offspring and the same is true for the elements of the image set of the topological
uniform 1-mutation (by definition). m

6. Discussion

In the introduction, we raised various questions, claiming that this way of interpreting

crossover lays a foundation to connect all these questions. In the following, we show

how our framework answers those questions by highlighting the properties of the class

of topological crossovers.

1. Generalization: topological crossover is a generalization of the family of cross-
overs based on masks for binary representation in that it captures and generalizes
the distinction between crossover and recombination for binary representation.



2. Unification: from preliminary research, we believe that a variety of operators
developed for other important representations, such as real-valued vectors, per-
mutations and syntax trees, fit our topological definitions given suitable notions
of distance (naturally not all pre-existing operators do this, but many do). Hence,
topological crossover has the potential to lead to a unification of the different
evolutionary algorithms.

3. Representation independence: evolutionary computation theory is fragmented.
One of the reasons is that there is not a unified way to deal with different solution
representation (although steps forward in this direction have recently been made
[Langdon & Poli 2002; Stephens & Poli 2004]), which has led to the develop-
ment of significantly different theories for different representations. In this con-
text, one important theoretical implication of our topological definitions is that
the genetic operators are fully defined without any reference to the representation.
This may pave the route to a unified treatment of evolutionary theory.

4. Clarification: the connections between operators, representation, distance and
neighborhood are completely clear when using topological operators.

5. Analysis: given a certain representation with pre-existing genetic operators, it is
easy to check whether they fit our topological definitions. If they do, their proper-
ties are unveiled.

6. Geometric interpretation: an evolutionary algorithm using topological operators
does a form of geometric search based on segments (crossover) and balls (muta-
tion). This suggests looking at the solution space not as a graph or hyper-graph, as
normally done, but rather as a geometric discrete space. The notion of distance
arising from the syntax of configurations reveals therefore a natural dual interpre-
tation:? (i) it is a measure of similarity (or dissimilarity) between two syntactic ob-
jects; (ii) and it is a measure of spatial remoteness between points in a geometric
space.

7. Principled design: one important practical implication of the topological defini-
tion of crossover is the possibility of doing crossover principled design. When
applying evolutionary algorithms to optimization problems, a domain specific so-
lution representation is often the most effective [Davis, 1991; Radcliffe, 1992].
However, for any non-standard representation, it is not always clear how to define
a good crossover operator. Given a good neighborhood structure for a problem,
all meta-heuristics defined over such a structure tend to be good. Indeed, the most
important step in using a meta-heuristic is the definition of good neighborhood
structure for the problem at hand [Glover, 2002]. With topological crossover,
given a good neighborhood structure or a good mutation operator, a crossover
operator that respects such a structure is automatically defined. This has good
chances of performing well, being effectively a composition of unitary moves on
the landscape. An example is shown in Figure 2, where we assume that we want
to evolve graphs with four nodes and we are given a mutation operator for such
graphs that either adds or removes exactly one edge. We want to define a good

3 Any mathematical object/property that admits a definition only based on the concept of
distance possesses a dual nature: a syntactic one and a geometric one.



crossover operator that would, for example, produce meaningful offspring when
applied to the parent graphs in Figure 2(a). The configuration space for this prob-
lem is shown in Figure 2(b). The parent graphs are boxed while the graphs be-
longing to the segment defined by the parents are encircled. With our definition
of topological crossover these are all possible successors, as shown in Figure
2(c).
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Fig. 2. Inducing crossover from mutation (see text).

Landscape and knowledge: the landscape structure is relevant to a search method
only when the move operators used in that search method are strongly related to
those which induce the neighborhood structure used to define the landscape [Back
et al, 1997]. This is certainly the case for the topological operators. The problem
knowledge used by an evolutionary algorithm that uses topological operators is
embedded in the connectivity structure of the landscape. The landscape is there-
fore a knowledge interface between a formal problem and a formal search algo-
rithm that has no knowledge of the problem whatsoever. In order for the knowl-
edge to be transmissible from the problem to the search algorithm through the
landscape, there are two requirements: (i) the search operators have to be defined
over the connectivity structure of the landscape (i.e. using a distance function);
(ii) the landscape has to be designed around the specific definitions of the opera-
tors employed in such a way to bias the search towards good areas of the search
space so as to perform better than random search.



9. Landscape conditions: for the no free lunch theorem [Wolpert & Macready,
1996], over all the problems, on average any search algorithm performs the same
as random search. So in itself a given search algorithm (any meta-heuristics) is
not inherently superior to any other. A search algorithm therefore, to be of use,
has to specify the class of problems for which it works better than random search.
The geometric definition of mutation (connected with the concept of ball) and the
geometric definition of crossover (connected with the concept of segment) sug-
gest, respectively, conditions over the landscape in terms of continuity and con-
vexity. These conditions, in various guises, are important to guarantee good per-
formance in optimisation [Pardalos & Resende, 2002] and ensuring them should
guide the landscape design for the topological operators.

7. Conclusions

In this paper, we have introduced a geometric/topological framework for evolutionary
algorithms that clarifies the connections between representation, genetic operators,
neighbourhood structure and distance in the landscape. Thanks to this framework a
novel and general way of looking at crossover (and mutation) that is based on land-
scape topology and geometry has been put forward. Traditional crossover and muta-
tion for binary strings have been shown to fit our topological framework, which, from
preliminary investigations, appears to also encompass a variety of other representa-
tions and associated operators.

This framework presents a number of additional advantages. The theory is repre-
sentation independent, and therefore it offers a unique opportunity for generality and
unification. The theory provides a natural, direct and automatic way of deriving (de-
signing) both mutation and crossover from the neighbourhood structure of a land-
scape. Conversely, if one adopts our topological operators, one and only one fitness
landscape is induced: that is we do not have a different landscape for each operator,
but a common one for both.

In future work we expect to further extend the applications of our framework to
other representations and operators, to study the connections between this theory and
other evolutionary computation theories (including those based on the notions of
schema) and to investigate the links with generalized notions of convexity and conti-
nuity for the landscape.
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