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Abstract-The relationship between search space, 
distances and genetic operators for syntactic trees is 
little understood. Geometric crossover and geometric 
mutation are representation-independent operators that 
are well-defined once a notion of distance over the 
solution space is defined. In this paper we apply this 
geometric framework to the syntactic tree 
representation and show how the well-known 
structural distance is naturally associated with 
homologous crossover and sub-tree mutation.   

1 Introduction 

A fitness landscape (Wright, 1932) can be visualised as a 
3D plot resembling a geographic landscape when the 
problem representation is a real vector of dimension 2. 
This interpretation can be extended for real vectors of 
higher dimensions. When dealing with binary strings and 
other more complicated combinatorial objects, such as 
permutations for example, the fitness landscape is better 
represented as a height function over the nodes of a simple 
graph (Reidys & Stadler, 2002), where nodes represent 
locations (solutions), and edges represent the relation of 
direct neighbourhood between solutions.  

An abstraction of the notion of landscape encompassing 
all the previous cases is possible. The solution space is 
seen as a metric space and the landscape as a height 
function over the metric space (Back et al, 1997). A metric 
space is a set endowed with a notion of distance among any 
pair of its elements fulfilling few axioms (Blumental & 
Menger, 1970). Specific spaces have specific distances that 
fulfil the metric axioms. The ordinary notion of distance 
associated with real vectors is the Euclidean distance, 
though there are other options, e.g. Minkowski distances. 
The distance associated to combinatorial objects is 
normally the length of the shortest path between two nodes 
in the associated neighbourhood graph (Deza & Laurent, 
1991). In the binary case, the shortest path distance 
associated to the hypercube is the Hamming distance. 

In general, there may be more than one neighbourhood 
graph associated to the same representation, simply 
because there can be more than one meaningful notion of 
syntactic similarity applicable to the same representation 
(Moraglio & Poli, 2005). For example, in the case of 
permutations the adjacent element swap distance and the 
block reversal distance are equally natural notions of 
distance arising from different types of syntactic similarity 

between permutations. Different notions of similarity are 
possible because the same permutation (genotype) can be 
used to represent different types of solutions (phenotypes). 
For example, permutations can represent solutions of a 
problem where relative order is important. However, they 
can also be used to represent tours, where the adjacency 
relationship among elements is what matters. 
The notion of fitness landscape is useful if the search 
operators employed are connected or matched with the 
landscape: the greater the connection the more landscape 
properties mirror search properties. Therefore, the 
landscape can be seen as a function of the search operator 
employed (Jones, 1995). Whereas mutation is intuitively 
associated with the neighbourhood structure of the search 
space, crossover stretches the notion of landscape further 
leading to search spaces defined over complicated 
topological structures (Jones, 1995). 

In (Moraglio & Poli, 2004) we introduced a 
representation-independent geometric generalization of 
crossover and mutation for binary strings and real vectors. 
These operators are based on the distance associated with 
the search space, seen as a metric space, and on the 
geometric notions of ball and line segment. This approach 
is the dual of Jones’ approach: we see the genetic 
operators as functions of the search space. So, mutation 
and crossover share the same neighbourhood structure. 
Since our geometric operators are representation-
independent, it is important to understand how they relate 
with the NFL theorem (Wolpert & Macready, 1996). The 
key is the difference between problem and landscape, the 
former being given and the latter being chosen by the 
designer. The landscape can be seen as a knowledge 
interface between algorithm and problem (Moraglio & 
Poli, 2005). Through a domain-specific solution 
representation and a distance that makes sense for the 
problem at hand, one can embed problem knowledge in the 
landscape. In (Moraglio & Poli, 2005) we discussed three 
heuristics to embed problem knowledge in the landscape in 
a form usable by an evolutionary algorithm with geometric 
crossover: pick a crossover associated to a good mutation, 
build a crossover using a neighbourhood structure based on 
the small-move/small-fitness-change principle, or build a 
crossover using a distance that is relevant for the solution 
interpretation.  
Disregarding minor differences, many evolutionary 
algorithms differ only in the solution representation and the 
genetic operators. In (Moraglio & Poli, 2004) we 
conjectured that many operators developed for important 
representations, comprising binary strings, real-valued 



vectors, permutations and syntactic trees, fit our geometric 
definitions given suitable notions of distance and that, 
therefore, our geometric framework could lead to a 
unification of different evolutionary algorithms. In this 
paper we add a new piece to the jigsaw puzzle of 
unification: after binary strings, real vectors and 
permutations, this time we consider syntactic trees.  
The fitness landscape associated with genetic operators for 
syntactic trees is little understood. Here we provide the 
following contributions: a) Application of the geometric 
framework (Moraglio & Poli, 2004) to the syntactic tree 
representation discussing the difference with other 
representations; b) Proof that the family of homologous 
crossovers (Langdon & Poli, 2002) for syntactic trees are 
geometric crossover under a family of structural distances; 
c) Clarification of the structure of the search space 
associated with structural distances; d) Proof that the 
natural mutation operator associated with homologous 
crossover and structural distances is the sub-tree mutation 
operator; f) Corroboration that homologous crossover 
based on structural distances between syntactic trees is a 
meaningful genetic operator for genetic programming. 

2 Geometric framework 

2.1 Geometric preliminaries 
In the following we give necessary preliminary geometric 
definitions and extend those introduced in (Moraglio & 
Poli, 2004) and (Moraglio & Poli, 2005). The following 
definitions are taken from (Deza & Laurent, 1997). 
A metric space (M, d) is a set M provided with a metric or 
distance d that is a real-valued map on MM ×  which fulfils 
the following axioms for all :,, 321 Msss ∈  

1. 0),( 21 ≥ssd  and 0),( 21 =ssd  if and only if 21 ss = ; 
2. ),(),( 1221 ssdssd = , i.e. d is symmetric; and 
3. ),(),(),( 322131 ssdssdssd +≤ (triangle inequality). 

A graphic metric space M=(V, Gd ) arises from a 

connected graph as follows: let G=(V,E) be a connected 
graph and Gd denote the path metric of G where, for two 

nodes Vji ∈, , ),( jid G
 denotes the length of a shortest 

path from i to j in G. We say that G represents M. Graphic 
metric spaces have unique graph representations. Any 
metric space that cannot be represented by a graph is a 
non-graphic metric space.  

Similarly, a metric space can arise from a weighted 
graph as follows: if G=(V,E) is a graph and Eeeww ∈= )(  

are strictly positive weights assigned to its edges, one can 
define the path metric ),(, jid wG

 of the weighted graph 

(G,w). Namely, for two nodes Vji ∈, ,  ),(, jid wG
 

denotes the smallest value of � ∈Pe ew where P is a path 

from i to j in G. In general, a metric space induced by a 
weighted graph is non-graphic and has more than one 
weighted-graph representation. Two of them are the 

nearest-neighbors graph and the all-pairs graph, but there 
are many intermediate weighted graph representations.  
In Euclidean geometry, the distance between two points 
in 2R , say A and B, is calculated using the formula: 

22 )()(),( BABA yyxxBAd −+−= . By redefining 

the distance function one obtains new geometries. One 
example is the 1st order Minkowski distance, 

||||),( BABA yyxxBAd −+−=  which is often 
referred to as the Manhattan metric.  
Many geometric figures, like circles, ellipses, parabolas, 
are defined in terms of distance. For instance, a circle is 
just the set of points with a fixed distance to the centre. 
These look quite different if we use a non-Euclidean 
distance. Indeed, we can go further and say that shapes are 
defined independently from the specific notion of metric 
used. These abstract shapes are studied in metric 
geometry. Two of them, balls and segments, are very useful 
to define abstractly mutation and crossover. 
In a metric space ),( dS  a closed ball is the set of the 
form }),(|{);( ryxdSyyxB ≤∈= where Sx ∈ and r 
is a positive real number called the radius of the ball. A 
line segment (or closed interval) is the set of the form 

)},(),(),(|{];[ yxdyzdzxdSzyx =+∈= where

Syx ∈, are called extremes of the segment. The length l 
of the segment ];[ yx  is the distance between a pair of 
extremes ),(]);([ yxdyxl = .  Note that ];[];[ xyyx =  
and that segments can have more than a pair of extremes. 
Also, a segment does not always coincide with a shortest 
path connecting its extremes (geodesic). Indeed, there may 
be more than one geodesic. 
We assign a structure to the solution set S by endowing it 
with a distance d. M=(S, d) is a solution space and L=(M, 
g) is the corresponding fitness landscape, where g is the 
fitness function. Note that d is an arbitrary distance and 
need not have any connection with the search problem at 
hand. However, to exploit problem knowledge in the 
search, one has to pick a distance that makes sense for the 
problem at hand.  

2.2 Geometric operator definitions 
A g-ary genetic operator OP takes g parents gppp ,..., 21  

and produces one offspring c according to a given 
conditional probability distribution: ),...,|( 21 gOP pppcf .  

Definition 1 The image set of a genetic operator OP for 
parents gppp ,..., 21 is 

}0),...,|(|{)],...,(Im[ 2121 >∈= gOPg pppcfScpppOP  

Definition 2 A unary operator M is an abstract �-mutation 
if );()](Im[ εpBpM ⊆  where � is the smallest real for 
which this condition holds true.  
Definition 3 A binary operator CX is an abstract 
crossover if ];[)],(Im[ 2121 ppppCX ⊆ . 
This simply means that in an abstract crossover offspring 
lay between parents. We use the term recombination as a 
synonym of any binary genetic operator. 

We now introduce two specific operators belonging to 
the families defined above.  



Definition 4 Abstract uniform �-mutation UM is an 
abstract �-mutation where  

|),(|
)),((

)|(
ε

εδ
ε xB

xBz
xzfUM

∈=  

δ(x) is a function which returns 1 if x is true , 0 otherwise.  
When � is not specified, we mean � = 1. 
Definition 5 Abstract uniform crossover UX is an abstract 
crossover where  

|],[|
]),[(

),|(
yx

yxz
yxzfUX

∈= δ  

These definitions are representation-independent and 
therefore the operators are well-defined for any 
representation.  

2.3 Uniqueness results for graphic distances 
Theorem 1 The structure over the configuration space C 
can equivalently be defined by the set G of the syntactic 
configurations and one of the following objects: 1. The 
neighborhood function Nhd, 2. The neighborhood graph 
W= (V, E), 3. The graphic distance function d, 4. Uniform 
topological mutation UM, 5. Uniform topological 
crossover UX, 6. The set of all balls B, 7. The set of all 
segments H. (See (Moraglio & Poli, 2004) for proofs) 
Corollary 1 Uniform topological mutation UM and 
uniform topological crossover UX are isomorphic. 
Corollary 2 Given a structure of the configuration search 
space in terms of neighborhood function or graphic 
distance function, UM and UX are unique.  
Corollary 3 Given a representation, there are as many 
UM and UX operators as notions of graphic/syntactic 
distance for the representation. 

3 Crossovers and distances for trees 

Let us now consider the tree representation and the class of 
homologous crossovers for trees. 

3.1 Subtree Swap Crossover & Homologous Crossover 
The common region is the largest rooted region where two 
parent trees have the same topology. In homologous 
crossover (Langdon & Poli, 2002) parent trees are aligned 
at the root and recombined using a crossover mask over the 
common region. If a node belongs to the boundary of the 
common region and is a function then the entire sub-tree 
rooted in that node is swapped with it. One special case of 
homologous crossover is one-point crossover in which a 
common crossover point is picked randomly from the 
nodes belonging to the common region and then the two 
sub-trees rooted at the crossover point are swapped. In 
subtree swap crossover (Koza, 1992) any subtree of one 
parent can be exchanged with any subtree of the other.  

3.2 Non-existence geometric crossover theorems 
Theorem 2. Subtree swap crossover is not a geometric 
crossover. 
Proof: For any metric, when two extremes of a segment are 
the same point the segment contains only that point. 
Subtree swap crossover applied to two copies of the same 

parent tree may produce offspring trees different from it. 
Consequently offspring trees cannot be in the segment 
between parent trees for any distance. So, subtree swap 
crossover is not geometric for any distance because it may 
produce offspring outside the image set of any geometric 
crossover operator                                                              � 
Theorem 3. Homologous crossover is not a geometric 
crossover under graphic distance. 
Proof: If by absurd homologous crossover were geometric 
under graphic distance then the edges of the unique graph 
representing the graphic distance associated with it would 
coincide with the segments of length 1 including only their 
two extremes. 
Let us consider the image sets under homologous 
crossover. The image set obtained by crossing over any 
tree with a tree consisting of only a node is either a set 
comprising the single node tree or the set comprising the 
two parent trees only. This means that if the homologous 
crossover were associated to a graphic distance in the 
associated graph there would be an edge connecting any 
tree to a tree with any single node tree. In terms of 
associated distance we have only four possible cases: (i) 
distance zero, coinciding extremes, segment containing 
only the extreme; (ii) distance one, one extreme is single 
node tree and the other any other tree, segment containing 
only these two trees; (iii) distance one, the two extremes 
are not single node trees, segment containing only these 
two trees; (iv) distance two, the two extremes are not single 
node trees, segment may contain any trees but must contain 
all single node trees. This is because when the distance 
between two trees is two there is a shortest path between 
the two trees passing on a single node tree. Notice that 
when the distance between two trees is two, to be graphic, 
the segment between the two trees must contain a tree that 
differs from the extreme trees. Distance two is the 
maximum distance between two trees because is the 
maximum length of the shortest path connecting any two 
trees passing through a single node tree. 
The image set obtained by crossing over two trees using 
homologous crossover may contain, beside the two parent 
trees, one or more offspring trees and does not need to 
contain any single node tree. In this case the distance 
between the two tree parents must be two, but there is no 
single node tree on the shortest path between these two 
trees, hence there is incongruence with condition (iv) 
above and the homologous crossover cannot be associated 
with a graphic distance                                             �  

Theorem 2 tells us that there is no distance naturally 
associable with the search space of subtree swap crossover. 
(See (Gustafson & Vanneschi, 2005) for a different notion 
of distance for this operator.) 

Because of Theorem 3 either homologous crossover is 
not a geometric crossover or homologous crossover is a 
geometric crossover based on a non-graphic metric space. 
If we find at least one distance that matches homologous 
crossover, then we know that homologous crossover is a 
geometric crossover and that the distance we found is a 
non-graphic distance.   



3.3 Structural Distance and Hyperschemata 
(Ekárt & Németh, 2000) defined an edit distance specific 
to genetic programming syntactic trees, adapted from 
(Nienhuys-Cheng, 1997). Two trees are brought to the 
same tree structure by adding null nodes to each tree. The 
cost of changing one node into another can be specified for 
each pair of nodes or for classes of nodes. The differences 
near the root have more weight. 

We propose the following normalized structural 
hamming distance (SHD) for trees   
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With SHD when two subtrees are not comparable (roots of 
different arities) they are considered to be at a maximal 
distance. When two subtrees are comparable their distance 
is at most 1.  
Theorem 4. SHD is a metric strictly bounded by 1. 
Proof 
SHD bounded by 1: we prove it by induction. It is clear 
that dist(S,T) ≤ 1 when the arities of root nodes p and q of T 
and S are either both 0 (p and q are leaves) or different. 
Now suppose T and S have equal non-zero arities: 
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SHD is a metric: 
identity: TSTSdist =↔= 0),(  
(i) if S=T then dist(S,T)=0. This is true because recursively 
the distance between all coupled subtrees of S and T is 0. 
(ii) dist(S,T)=0 implies that the item 2 in the definition of 
dist must not apply to any paired nodes otherwise the 
distance among two nodes becomes non-zero and 
consequently the distance of the whole trees becomes non- 
zero as well. Since for every paired nodes the trees S and T 
have the same arity then S and T have the same structure. It 
is easy to see that two trees with the same structure have 
dist(S,T)=0 if and only if hd(p,q)=0 for any paired nodes p 
and q i.e. p=q. 
symmetry: dist(S,T)=dist(T,S) is trivially true because dist 
is defined using symmetric functions.     
triangular inequality: 

),(),(),( TRdistTSdistSRdist ≥+  
We prove it by induction on the depth of the tree.  
Base case: suppose depth(R)=depth(S)=depth(T)=0, so R, 
S and T have roots of arity zero. The triangular inequality 
holds in this case because dist degenerates to the hamming 
distance between roots for which the triangular inequality 
holds. 

Induction hypothesis: suppose the triangular inequality 
is true if the depth of R, S and T is at most k. Verify 
induction implication: we now assume the tree among R, S 

and T that has the greatest depth, has depth k+1. Let us 
consider in the following all possible cases. 
• Arity(root(R)) ≠ arity(root(T)): in this case 

dist(R,T)=1. We have two sub-cases: (i) 
arity(root(R)) ≠ arity(root(S))=arity(root(T)) in which 
case dist(R,S)=1 and the triangular inequality holds; 
(ii) arity(root(R)) ≠ arity(root(S)) and arity(root(S)) 
≠  arity(root(T)) in which case dist(R,S)=1 and 
dist(S,T)=1 so that the triangular inequality holds. 

• Arity(root(R))=arity(root(T))=0: in this case 
dist(R,T)=hd(R,T) ≤ 1. We have two sub-cases: (i) 
arity(root(R))=arity(root(S))=arity(root(T))=0, in 
which case dist degenerates to hamming distance and 
the triangular inequality holds; (ii) arity(root(S))>0, in 
which case dist(R,S)=dist(S,T)=1, hence the triangular 
inequality holds. 

• arity(root(R))=arity(root(T))=m>0 and arity(root(S)) 
≠ m: in this case dist(R,T) ≤ 1 and 
dist(R,S)=dist(S,T)=1 because the root node of S in 
diverse in arity hence not comparable with R and T. 
Hence the triangular inequality holds. 

• arity(root(R))=arity(root(S))=arity(root(T))=m:  
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induction hypothesis 
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The hyperschema (Langdon & Poli, 2002) associated 

with two trees is the tree structure that has the topology of 
the common region of the two trees; its nodes are ‘=’ when 
two matched nodes differ in the content, or ‘#’ replacing 
two subtrees whose roots are matched but their arities 
differ, or any other content when it is the same in both 
matched nodes. Figure 1 illustrates the relation between 
parent trees, hyperschema and offspring trees and shows: at 
the top, two parent trees P1 and P2; at the bottom on the 
left, their associated hyperschema H(P1,P2); at the bottom 
on the right, all the potential offspring applying 
homologous crossover to parents P1 and P2 (the part in 
bold means alternative content of the tree; in this case there 
are 5 independent binary alternatives, resulting in 32 
possible offspring). 

The SHD distance between two trees is only function of 
the hyperschema associated with the two trees and not 
directly of the two trees (figure 2).  

3.4 Geometric Crossover Theorems 
Theorem 5. Homologous crossover is a geometric 
crossover under SHD. 

 



 

 
Figure 1 Hyperschema and offspring set 

 

Figure 2 Hyperschema and structural distance 

Proof 
Remark 1: as shown in figure 2, the distance between two 
trees P1 and P2 is function d of the hyper-schema 
H(P1,P2) identified by the two trees: SHD(P1,P2)=d(H) 
Remark 2: every offspring of two trees is obtained by 
substituting each wildcard characters in the hyper-schema 
with a node (=) or a sub-tree (#) coming either from one 
parent or from the other at that specific position 
Remark 3: be p1,..,pn the positions in the structure of H of 
the wildcard characters. Then the distance d(H) can be 
decomposed into a sum of distances that are only functions 
of the positions of the wildcard characters in the tree: 
d(H)=d(p1)+…+d(pn)   
Remark 4: be O the offspring of P1 and P2. Then the 
hyper-schema H(P1,O) is obtainable by turning some 
wildcard characters in H(P1,P2) to corresponding 
nodes/sub-trees from parent P1. The hyper-schema 
H(O,P2) is obtainable by turning the wildcard characters in 
H(P1,P2) left untouched to corresponding nodes/sub-trees 
from parent P2 

Remark 5: the positions of wildcard characters in H(P1,O), 
say {p(i)}, and in H(O,P2), say {p(j)}, are complementary, 
which is there is no i and j such as p(i)=p(j), and taken all 
together are the same as in H(P1,P2), which is 

,pn},{p{p(j)}{p(i)} …=∪ 1  
Remark 6: Hence: d(H(P1,O))+d(H(O,P2)) = 
 =d({p(i)})+d({p(j)})=sum{d(p(i))}+sum{d(p(j))}= 
=sum{d(p1),…,d(pn)}=d({p1,…,pn})=d(P1,P2)  
This means that every offspring O of P1 and P2 is in the 
segment between P1 and P2 under dist                              � 
Theorem 6. The image set of the class of homologous 
crossovers is the segment between the two parent trees 
under SHD. 
Proof: We need to prove that O in [P1,P2] implies O in 
the image set of homologous crossover R(P1,P2). Let us 
assume by absurdum that O in [P1,P2] but not in 
R(P1,P2). Then d(P1,O)+d(O,P2)=d(P1,P2) and either (i) 
O matches H(P1,P2) but does not take the node/sub-tree of 
either parents at (at least) one position in H or (ii) O does 
not match H(P1,P2). In case (i) the positions of wildcard 
characters in H(P1,O) and H(O,P2) are not complementary 
but their union still equals the positions of the wildcards in 
H(P1,P2). This means that some of the wildcard positions 
are present in both {p(i)} and {p(j)} implying that the sum 
of the associated distances is greater than the distance 
associated with their union; hence 
d(P1,O)+d(O,P2)>d(P1,P2). In case (ii) there are two sub-
cases: (a) O does not match H(P1, P2) but matches its 
structure; this happens when some nodes of O do not match 
the corresponding non-wildcard characters in H. (b) O does 
not match the structure of H(P1, P2); this happens when 
some nodes of O do not have the same arity of the 
corresponding node in H. In sub-case (a) the positions 
{p(i)} and {p(j)} of the wildcard characters in H(P1,O) and 
H(O,P2) respectively, both contain the positions of the 
mismatch with O plus, each one, a complementary 
bipartition of the set of positions {p1,…,pn}. Since the 
distance associated with H(P1,P2) is additive function of 
the set of positions {p1,…,pn} and the union of  {p(i)} and 
{p(j)} is a proper subset of {p1,…,pn} then the sum of the 
distances associated with H(P1,O) and H(O,P2) is greater 
than the one associated with H(P1,P2). In the sub-case (b) 
O differs (in arity) at certain position form both parents 
hence H(P1,O) and H(O,P2) are obtained by, first, pruning 
H(P1,P2) at the node in which O differs in arity and put a 
wildcard character and, then, substituting some of the 
wildcards with some nodes/sub-trees at the corresponding 
position from P1 and P2 respectively. The pruning of 
H(P1,P2) always produces an hyper-schema which 
associated distance is greater or equal to the one associated 
to the H(P1,P2) un-pruned. This is because the weight 
associated with a wildcard substituting a sub-tree is an 
upper-bound of the contributions of the sum of the weights 
of any possible sub-tree put in that position. The positions 
of the wildcards in H(P1,O) and H(O,P2) are 
complementary except for the wildcard attached at the 
position of the pruned tree, that appears in both trees. This 
wildcard therefore contributes to both the distances 
associated with H(P1,O) and H(O,P2) and being un upper 
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bound of the contributions in the sub-tree of H(P1,P2) it 
replaces, we have H(P1,O)+H(O,P2)>H(P1,P2) also in 
this last case                                                                        � 

3.5 Analysis of the normalization coefficient  
The normalizing value n=1/(m+1) in SHD has been chosen 
to have a strict bound at 1 and consistency in the distance 
between two fully different subtrees in two senses: (i) any 
two sub-trees that have the same structure and differ in all 
nodes must have distance 1 (ii) any two subtrees that are 
incomparable must have distance 1. For smaller values of 
n, SHD is still a metric but the bound 1 is never reached. 
This would give greater distance to subtrees that are non-
comparable than to subtrees that are fully-comparable but 
differ in all nodes. For n slightly bigger than 1/(m+1), SHD 
is still a metric, not bounded by 1, but still bounded. 
Between 1/(m+1) and 1 there is a critical value of n for 
which SHD ceases to be a metric. In the following we 
consider SHD with n=1, that we call Hamming distance 
(HD) between syntactic trees. (HD can be also seen as the 
number of mismatching nodes at corresponding positions 
within the common region.) 
Theorem 7. HD is not a metric 
Proof: Let us consider three syntactic trees, T1, T2 and T3. 
T1 consists only of a single terminal node. T2 and T3 have 
the same shape and size k but they differ in all matching 
nodes. If HD is a distance the triangular inequality must 
hold for any choice of T1, T2 and T3. In the specific case 
of our example the following must hold 

 )3,2()3,1()1,2( TTHDTTHDTTHD ≥+ . Since 
we have HD(T2,T1)=1, HD(T1,T3)=1 and HD(T2,T3)=k, 
it is immediate to see that for k>2 the triangular inequality 
fails to hold. Hence, HD is not a metric                             �                                                                           
Looking at the proofs of theorem 5 and 6, it is easy to see 
that they work for 0<n<1/(m+1). So there is a whole 
family of distances that match homologous crossover. 

4 Graphic space vs non-graphic space 

In the previous section we have shown that homologous 
crossover is geometric but non-graphic. Since Theorem 1 
and Corollaries 1, 2 and 3 are for graphic distances, they 
do not necessarily hold for tree homologous crossover.  

Tables 1 and 2 summarise the cardinality of the 
relations between solution representation, neighbourhood 
structure, distance, geometric mutation and geometric 
crossover in the case of graphic and non-graphic spaces, 
respectively. The rows labelled “representation” are 
identical and tell us that to a solution representation may be 
associated: (i) more than one neighbourhood structure; (ii) 
more than one distance because each neighbourhood 
structure induces a path metric; and  consequently (iii) 
more than one type of geometric mutation operator and (iv) 
more than one type of geometric crossover operator 
because, geometric operators are functions of the distance, 
and so there are as many types available as the distances 
for the same representation.  

Table 1 - Graphic space and graphic operators 

Graphic representation structure distance mutation crossover 
Representation - many many many many 
Structure many - 1 1 1 
Distance many 1 - 1 1 
Mutation many 1 1 - 1 
Crossover many 1 1 1 - 

Table 2 - Non-graphic space and non-graphic operators 

Non-graphic representation weighted 
structure 

distance mutation crossover 

Representation - many many many many 

W. structure many - 1 1 1 
Distance many many - 1 1 
Mutation many many many - many? 
Crossover many many many many? - 

 
The rows labelled (neighbourhood) “structure” are also 

the same. This tells us that there can be different 
representations that induce the same neighbourhood 
structure; the three 1’s in the row are due to the fact that 
distance, mutation and crossover are functions of the 
neighbourhood structure and this does not depend on the 
type of underlying structure.  

The row labelled “distance” says that there may be more 
than one representation associated to the same distance for 
both graphic and non-graphic spaces; the first 1 in that row, 
in table 1, tells us that a graphic distance has a unique 
graphic representation. In table 2 in the same cell we find 
‘many’, meaning that for any non-graphic distance there is 
no simple graph representation but instead there are many 
possible weighted graphs representations. So, the notion of 
unique and discrete search space structure, like the hyper-
cube for the Hamming distance for binary strings for 
example, in the case of non-graphic distances is lost. The 
following two 1s in the row, in both tables, are there 
because mutation and crossover are function of the 
distance, so they are unique to it.  

The row for mutation tells us that the same mutation 
operator, graphic or non-graphic, may arise from different 
solution representations. Given a graphic mutation operator 
is always possible to determine the full structure of its 
underlying graphic space and, hence, its associated graphic 
distance and its associated graphic crossover. This 
uniqueness result is possible because of the graphic 
character of graphic mutation and it is not valid in general 
(for details see (Moraglio & Poli, 2004)). The situation for 
non-graphic mutation is quite different: passing from a 
weighted graph (structure of the search space) to its 
induced non-graphic metric space, there is a loss of 
information; there is a further loss of information when 
passing from the distance to its induced non-graphic 
mutation. The same reasoning applies to crossover (last 
row in the tables). Hence, for non-graphic operators, the 
theorem of uniqueness of distance and space structure for 
crossover and mutation, which holds in the graphic case, 
ceases to hold, opening up to the possibility of more than 
one distance and space structure associated with the same 
non-graphic operator. 

In essence table 1 tells us that no matter what graphic 
element one knows - space structure, distance, mutation or 



crossover - one can always determine any other. Table 2 
tells us that for non-graphic spaces the weighted structure 
has more information than the induced distance that, in 
turn, embeds more information than the induced mutation 
and crossover operators. Since the mutation-crossover 
isomorphism theorem for graphic operators relies on the 
uniqueness of their underlying distance, the one-to-one 
mapping between non-graphic mutation and non-graphic 
crossover is not provable in this way.  

The fact that homologous crossover for syntactic trees is 
non-graphic does not preclude the possibility of a graphic 
crossover for syntactic trees based on a graphic distance 
between trees. (O'Reilly, 1997) proposed a simple 
extension of Levinsthein distance for sequences to 
syntactic trees, that is indeed a graphic distance. The 
geometric crossover based on such a distance is, therefore, 
an example of graphic crossover for syntactic trees 
(however, the geometric crossover based on such a 
distance is allowed to generate infeasible offspring and this 
may be undesirable). So, the non-graphic label is attached 
to the distance and to the genetic operators based on it; it 
is not inherent of the underlying representation or of the 
geometric operators for a given representation. 

5 SHD mutation   

What is the mutation operator associated to homologous 
crossover? We have seen in section 4 that is not clear 
weather or not the one-to-one mapping existing between 
graphic crossover and graphic mutation extends to non-
graphic operators. However, since both mutation and 
crossover are defined as functions of a distance, we will 
consider one mutation operator that is connected to the 
homologous crossover through the SHD metric. We should 
bear in mind, though, that there may be other mutation 
operators connected to it through other distances. 

(Vanneschi et al., 2003) introduced structural mutation 
operators for syntactic trees and proved that their operators 
are consistent in some sense with the structural distance. In 
the following we discuss the geometric mutation operator 
defined over the SHD, that is a variation on the structural 
distance. That is, we consider the potential mutated 
offspring of a tree as those trees that are within the ball or 
radius � centred on the parent tree. 

Unlike geometric crossover that partitions the set of all 
binary genetic operators in two clear-cut categories, 
crossovers and non-crossovers, geometric mutation has a 
continuous character and any unary operator is a geometric 
mutation under any distance. The point is to understand 
how a syntactic change affects the amount of mutation (i.e. 
the distance between the parent and the offspring) under a 
given distance. So the questions to ask are: what syntactic 
change is a micro-mutation under SHD? And what other 
syntactic change is a macro-mutation? How much a 
specific syntactic change affects the amount of mutation?  

To understand the peculiarity of SHD mutation we 
compare it with mutation for binary strings. For binary 
strings the amount of mutation is: 

• non-positional: mutating any locus results in the same 
amount of mutation 

• proportional to the syntactic change: lots of bit 
changed, lots of mutation 

• based on single-type mutation: bit-flip only 
• additive: two bit changed add up in terms of 

contribution 
For trees the amount of mutation associated with SHD is: 
• positional: the extent of the mutation depends on the 

depth at which the mutation occurs: the deeper the 
level, the smaller the mutation; it depends also on the 
branching factor of the path from the root node to the 
node at which mutation takes place: the bigger the 
branching factor, the smaller the mutation. If we want 
to restrict the mutation to be within a certain distance 
from the parent tree, this can be done approximately 
by picking mutation sites below a certain level in the 
tree. If we take as a mutation site every node in the 
parent tree with uniform probability on the node of the 
tree, we allow for maximal macro-mutation (changing 
the root of the tree produces a tree a maximal distance 
(distance 1)) with low probability and micro-mutation 
with higher probability since the number of nodes 
increases geometrically with the depth of the node in 
the tree. 

• Non-proportional to syntactic change: a big mutation 
at a big depth may be smaller than a small mutation 
closer to the root 

• Based on various types of mutation (Back et al, 2000): 
o Point mutation (Langdon & Poli, 2002): node 

substitution at a specified position in the tree 
o Subtree-prune mutation: a sub-tree is substituted 

by a terminal node 
o Subtree-grow mutation: a terminal node of the tree 

is substituted by a sub-tree 
o Subtree mutation: a sub-tree is substituted by 

another sub-tree 
o All edit moves considered above are degenerated 

forms of sub-tree edit move 
• Weighted additive and coherent: there is only one 

weighted edit move, the unrestricted sub-tree edit 
move, which degenerates to specific coherently and 
additively weighted edit moves in special cases. 

6 Tree Interpretation and Smooth Landscape 

In previous sections we have described the search space 
associated with genetic operators for syntactic trees. In the 
following we discuss how such a search space and fitness 
connect together giving a picture of the fitness landscape in 
its entirety. 

In the introduction we mentioned that what is really 
important for an algorithm to perform better than random 
search is how problem and algorithm are connected via 
distance. In (Moraglio & Poli, 2005) we have suggested 
that if one picks a distance that makes sense for the entity 
represented (phenotype) by the solution (genotype), then 



the geometric crossover defined over this distance is likely 
to perform well. The logic is the following: closer 
genotypes imply closer phenotypes that in turns imply 
closer fitness. This allows for a smooth fitness landscape 
that is good for most meta-heuristics based on 
neighbourhood search (Glover, 2002). Naturally, this is a 
rule of thumb and not a proven theorem. A question comes 
to mind: does the SHD metric associated with homologous 
crossover make sense when syntactic trees are interpreted 
as GP programs? Is it a meaningful distance in terms of GP 
programs? 

Because of the way solutions are encoded in genetic 
programming and since information propagates in the tree 
from the leaves (some of which might never be reached 
during evaluation of a solution) to the root node (that is 
always considered), the nodes near the root of the tree are 
typically much more influential than nodes at lower levels. 
Such an interpretation of a syntactic tree is very different 
from that given to other types of tree-like structures. For 
example, in a tree structure to find the minimum spanning 
tree of a graph encoding a sub-part of the graph, every 
node of the tree has presumably the same importance. The 
syntax of the two representations above is similar, but the 
part of their syntax having an impact on the phenotype 
(interpretation) is completely different. 

In section 5, we have seen that the distance associated 
to homologous crossover assigns a greater weight, for the 
same amount of syntactic change, to the top of the tree and 
smaller weight to the bottom of the tree. This goes well 
with the previous landscape design principle in that, when 
the tree is interpreted as a GP program, changes at upper 
levels of the tree have a much higher impact on the 
behaviour of a program than changes at lower levels. In 
turn, the impact on the behaviour is reflected on the fitness. 
So, programs that are modified at an upper level have 
much higher probability to behave completely differently 
and, therefore, to have very different fitnesses than 
programs that are neighbours for a modification at a lower 
level in the tree.  

Homologous crossover for syntactic trees is therefore a 
very natural choice when the trees are interpreted as GP 
programs as it induces a smoother landscape that is likely 
to facilitate the search. 

7 Conclusions 

We have shown that the geometric framework naturally 
connects the notion of homologous crossover, subtree 
mutation, hyperschema and structural distance for syntactic 
trees. We have also described the structure of the space of 
syntactic trees associated with these elements and argued 
that, when using the standard interpretation of syntactic 
trees as programs, the associated landscape is smoother, 
hence the homologous crossover is a good choice. 

 In the future we will be looking at other distances for 
syntactic trees and corresponding spaces and operators. In 
particular we will focus on component-wise distances and 
grammatical distances, that arise by considering, 

respectively, the syntactic tree as a collection of sub-
components, and as a syntactic object based on a formal 
grammar. 

To conclude we want to emphasise the significance of 
the present results in the larger context of our on-going 
programme of evolutionary algorithms unification: most of 
the pre-existing genetic operators for binary strings, 
permutations, real vectors and now also some operators for 
syntactic trees, all fit nicely and naturally the geometric 
framework hence implying a profound geometric unity of 
all major flavours of existing evolutionary algorithms. 
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