Measuring the Relatedness between Documents in Comparable Corpora

Hernani Costa^a, Gloria Corpas Pastor^a and Ruslan Mitkov^b {hercos,gcorpas}@uma.es, r.mitkov@wlv.ac.uk

> ^aLEXYTRAD, University of Malaga, Spain ^bRIILP, University of Wolverhampton, UK

> > November, 2015

Introduction

Overview

- Comparable Corpora (CC)
 - automatic and assisted translation
 - language teaching
 - terminology
- Describing, comparing and evaluating CC
 - lack of standards
- This work aims at investigating the use of Distributional Similarity Measures (DSMs) as a tool to assess CC by
 - extracting
 - measuring
 - ranking

Introduction

Motivation

- An inherent problem to those who deal with CC in a daily basis is the uncertainty about the data they are dealing with
 - tags like "casual speech transcripts" or "tourism specialised comparable corpus" are not enough to describe a corpus
- Most of the resources at our disposal are
 - built and shared without deep analysis of their content
 - used without knowing nothing about the relatedness quality of the corpus

Introduction

Objectives

Investigate the use of textual DSMs in the context of CC

- automatically measure the relatedness between docs
- describe CC through the DSMs output scores
- analyse which features perform better
- rank docs by their degree of relatedness

Methodology

Methodology

1) Data Preprocessing

- Sentence Detector and Tokeniser OpenNLP¹
- POS tagger and lemmatisation TT4J²
- Stemming Snowball³
- Stopword list⁴

2) Identifying the list of common entities between docs

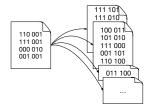
- Three co-occurrence matrices
 - common tokens, common lemmas and common stems

¹https://opennlp.apache.org
²http://reckart.github.io/tt4j/
³http://snowball.tartarus.org
⁴https://github.com/hpcosta/stopwords

Methodology

Methodology

3) Computing the similarity between docs

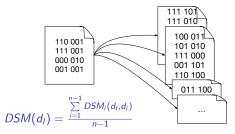


- Input: list of common tokens, lemmas and stems
- $DSMs = \{DSM_{CE}, DSM_{SCC}, DSM_{\chi^2}\}$
 - CE: number of Common Entities
 - SCC: Spearman's Rank Correlation Coefficient
 - χ^2 : Chi-Square

Methodology

Methodology

4) Computing the doc final score



where

- n: total number of docs
- DSM_i(d₁, d_i): the resulted similarity score between the doc d₁ with all the docs

5) Ranking docs

• descending order according to their DSMs scores

Hernani Costa

hercos@uma.es TIA | Granada, Spain

Corpora Results & Analysis

Corpora

Statistical information about the various subcorpora

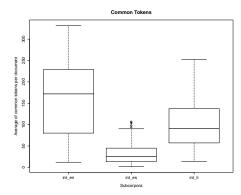
	nDocs	types	tokens	types tokens
int_en	151	11,6k	496,2k	0.023
eur_en	30	3.4k	29,8k	0.116
int_es	224	13,2k	207,3k	0.063
eur_es	44	5,6k	43,5k	0.129
int₋it	150	19,9k	386,2k	0.052
eur₋it	30	4,7k	29,6k	0.159

- int_en, int_es and int_it: INTELITERM's docs in English, Spanish and Italian
- eur_en, eur_es and eur_it: docs randomly selected from the "one per day" Europarl v.7

Corpora Results & Analysis

INTELITERM corpus

Descriptive Statistics



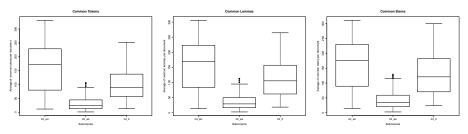
Average and standard deviation of common tokens scores between docs per subcorpus

		NCT
int_en	av	163.70
	σ	83.87
int_es	av	31.97
int_es	σ	23.48
int_it	av	101.08
	σ	55.71

Corpora Results & Analysis

INTELITERM corpus

General Findings

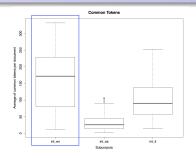


- scores for each subcorpus is roughly symmetric
 - \rightarrow data is normally distributed
- distributions between the features are quite similar
 - \rightarrow it is possible to achieve acceptable results only using tokens

Corpora Results & Analysis

INTELITERM corpus

EN vs. ES & IT



NCT per doc on average is higher + large IQR + long whiskers + skewed left

 \rightarrow data is more spread + average of NCT per doc is more variable + wide type of docs (either highly or roughly correlated to the rest of the docs)

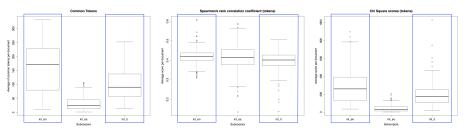
 \rightarrow but, in general, docs have a high degree of relatedness between each other

11/20

Corpora Results & Analysis

INTELITERM corpus

EN & IT vs. ES



- From the statistical and theoretical evidences
 - \rightarrow NCT: high + SCC: high average scores +
 - χ^2 : long whisker outside the upper quartile
 - \rightarrow EN and IT subcorpora look like they assemble highly correlated docs

 \rightarrow docs have a high degree of relatedness between each other

EXPERT

12/20

Is int_es composed by low related docs?

Corpora Results & Analysis

Measuring DSMs Performance

Goal

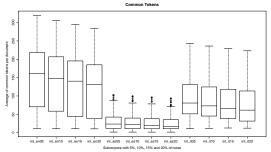
• How do the DSMs perform the task of filtering out docs with a low level of relatedness?

- Set-up
 - inject different sets of out-of-domain docs, randomly selected from the Europarl corpus to the INTELITERM subcorpora

Corpora Results & Analysis

Measuring DSMs Performance

Average scores between docs when injecting 5%, 10%, 15% and 20% of noise



- the more noisy docs are injected, the lower is the NCT
- Next step: rank docs in a descending order according to their DSMs scores and evaluate their precision

14/20

Corpora Results & Analysis

Measuring DSMs Performance

DSMs precision when injecting different amounts of noise to the various subcorpora

SubC	Noise	NCT	SCC	χ^2
int_en	5%	0.89	0.22	1.00
	10%	0.73	0.33	1.00
	15%	0.73	0.36	0.95
	20%	0.80	0.37	0.90
int_es	5%	0.00	0.00	0.38
	10%	0.07	0.07	0.20
	15%	0.09	0.09	0.17
	20%	0.14	0.18	0.23
int_it	5%	0.88	0.13	0.88
	10%	0.82	0.06	0.82
	15%	0.74	0.09	0.83
	20%	0.73	0.13	0.87

- none of the DSMs got acceptable results for Spanish
 - due to the pre-existing low level of relatedness
- promising results for English and Italian
 - NCT and χ^2 performed well

Corpora Results & Analysis

Summary

From the statistical and theoretical evidences

- int_en and int_it
 - assemble highly correlated docs
- int_es
 - scarceness of evidences only allow was to not reject the idea that this subcorpus is composed of similar docs
- NCT & χ^2
 - suitable for the task of filtering out low related docs with a high precision degree

Conclusion Current Work

Conclusion

- DSMs can be used to describe and measure the relatedness between docs in specialised CC
 - three different input features were used (lists of common tokens, lemmas and stems)
 - for the data in hand, these features had similar performance for all the tested DSMs
- INTELITERM corpus seems to be composed of highly correlated docs
 - high number of CE and positive average SCC and χ^2 scores

Conclusion Current Work

Current Work

- Perform more experiments with DSMs
 - use other languages
 - evaluate other DSMs (e.g. Jaccard, Lin and Cosine)
 - compare corpora manual with semi-automatic compiled

 \rightarrow Using this approach to automatically filter out docs with a low level of relatedness

 \rightarrow will improve the precision of terminology extraction

Conclusion Current Work

Acknowledgements

Hernani Costa is supported by the People Programme (Marie Curie Actions) of the European Union's Framework Programme (FP7/2007-2013) under REA grant agreement n° 317471. Also, the research reported in this work has been partially carried out in the framework of the Educational Innovation Project TRADICOR (PIE 13-054, 2014-2015); the R&D project INTELITERM (ref. n° FFI2012-38881, 2012-2015); the R&D Project for Excellence TERMITUR (ref. n° HUM2754, 2014-2017); and the LATEST project (ref. 327197-FP7-PEOPLE-2012-IEF).

Conclusion Current Work

