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Introduction

Motivation

With the technological advance registered in the last decades, there
has been an exponential growth of the textual information available
(Bawden et al., 1999)

Personal Assistant Agents (PAAs) can help humans to cope with the
task of filtering out irrelevant information

PAAs should consider not only the user’s preferences, but also their
context and intentions when recommending a new piece of
information
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Introduction

Main Goal

Help humans with the Information Overload problem

Develop a Emotion-Based News Recommender System
using a Multiagent Approach
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Multiagent Systems (MAS) Recommender Systems (RS)
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NLP & AC

Natural Language Processing
(Jurafsky and Martin, 2009)
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Information Extraction (IE)

automatically extract structured

information from unstructured

natural language resources

Information Retrieval (IR)

locate specific information in

natural language resources

Affective Computing
(Picard, 1997)
simulate human affect

Detect Affective States

explicitly or implicitly

Affective Interaction

make emotional experiences
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MAS & RS

Multiagent Systems
(Wooldridge, 2009)
work in dynamic environments

Agents

multiple, independent,

autonomous and goal-oriented

Recommender Systems
(Jannach et al., 2011)
filter information

Approaches

Collaborative Filtering,

Content-Based, Hybrid
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Introduction Research Goals

Tasks

Collect

Extract

Represent

Share

Deliver
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Introduction Research Goals

Tasks

Collect information from different sources (Paliouras et al., 2008)

Extract

Represent
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Introduction Research Goals

Tasks

Collect

Extract information from the news (Ritter et al., 2011; Li et al., 2011)

Represent

Share

Deliver
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Introduction Research Goals

Tasks

Collect

Extract

Represent the extracted information into a structured representation
(Sacco and Bothorel, 2010; IJntema et al., 2010)

Share

Deliver
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Introduction Research Goals

Tasks

Collect

Extract

Represent

Share information between users, such as users’ preferences and
emotional features (González et al., 2002; Stickel et al., 2009; Yu
et al., 2011)

Deliver
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Introduction Research Goals

Tasks

Collect

Extract

Represent

Share

Deliver information based on the learned preferences and expected
human’s intentions (Knijnenburg et al., 2011; Lops et al., 2011; Costa
et al., 2012)
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Approach System’s Architecture

Data Aggregation and Extraction

Data Aggregation
I capable of gathering information from a wide number of Web sources
I responsible for the information’s quantity and quality

Information Extraction

I automatically extract the most relevant terms
I terms polarity, e.g., ML algorithms and SentiLex1

pre-filter

stopwords, POS tagger or grammars (Costa, 2010)

keyphrase extraction algorithm
post-filter

e.g., discard verbs and rate the keyphrases (Onto.PT2 and DBpedia3)

1
http://dmir.inesc-id.pt/project/SentiLex-PT_02

2
http://ontopt.dei.uc.pt

3
http://dbpedia.org
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Approach System’s Architecture

Knowledge Base

Traditional Database

I store

F the gathered information
F users’ feedback
F community trends

I perform

F tests
F debug

Ontology

I represent structured information, i.e., keyphrases and their relations
I infer new knowledge, e.g., main topics by using clustering algorithms

(to reduce the cold-start problem (Schein et al., 2002))
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Approach Validation

Validation

Knowledge Extracted

System’s Recommendations
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Approach Validation

Extraction Methods and Knowledge Extracted

Manual Evaluation
I using a reliable sample size

Information Retrieval Methods

I quality

F amount of keyphrases that are correctly identified (precision)

I quantity

F amount of keyphrases among those that should have been extracted
(recall)
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Approach Validation

Recommender’s Evaluation

Quality and Quantity

I users’ feedback
I IR methods, e.g., precision, recall and F 1

Performance

I time the system consumes while executing the expected tasks
I system scales and keeps responding under different circumstances

Usability

I questionnaires to identify interface needs and assess the users’
satisfaction
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Contributions Expected Contributions

Expected Contributions

Make a comparative view of the most common algorithms used to
identify keyphrases and clusters

Study the most suitable metrics to quantify and quality the
information extracted

Define dynamic users’ models to work in real-time
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Contributions Expected Contributions

Expected Contributions

Study the impact of sharing information among the users
Does the introduction of collaborative recommendations improve the
users’ trust and usage?

Make freely available
the Knowledge Base, as well as the final Application

Analyse if the affect-based PAA avoid their human owners from
receiving irrelevant or emotionless information
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Conclusion Deployment and Advertisement

Deployment and Advertisement

Collect Feedback
I ResearchGate4, Forum-LP5, Corpora List6, Linguist List7

Website

I get information about the project
I download the Application
I browse and search the Knowledge Base
I provide feedback

4
https://www.researchgate.net

5
forum-lp@di.fct.unl.pt

6
corpora@uib.no

7
linguistlinguistlist.org
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Conclusion Summary

Summary
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Affective
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