Emotion-Based Recommender System for Overcoming the Problem of Information Overload

Hernani Costa and Luis Macedo {hpcosta,macedo}@dei.uc.pt

> CISUC, University of Coimbra Coimbra, Portugal

Salamanca, May, 2013

Motivation

With the technological advance registered in the last decades, there has been an exponential growth of the textual information available (Bawden et al., 1999)

Motivation

With the technological advance registered in the last decades, there has been an exponential growth of the textual information available (Bawden et al., 1999)

Personal Assistant Agents (PAAs) can help humans to cope with the task of filtering out irrelevant information

Motivation

With the technological advance registered in the last decades, there has been an exponential growth of the textual information available (Bawden et al., 1999)

Personal Assistant Agents (PAAs) can help humans to cope with the task of filtering out irrelevant information

PAAs should consider not only the user's preferences, but also their context and intentions when recommending a new piece of information

Main Goal

Help humans with the Information Overload problem

Main Goal

Help humans with the Information Overload problem

Develop a Emotion-Based News Recommender System using a Multiagent Approach

Background

Background Knowledge

Natural Language Processing (NLP)

Multiagent Systems (MAS)

Affective Computing (AC)

Recommender Systems (RS)

NLP & AC

Natural Language Processing

(Jurafsky and Martin, 2009) *understand the language*

Information Extraction (IE) automatically extract structured information from unstructured natural language resources

Information Retrieval (IR) locate specific information in natural language resources

NLP & AC

Natural Language Processing

(Jurafsky and Martin, 2009) understand the language

> Information Extraction (IE) automatically extract structured information from unstructured natural language resources

Information Retrieval (IR) locate specific information in natural language resources Affective Computing (Picard, 1997) simulate human affect

> Detect Affective States explicitly or implicitly

Affective Interaction make emotional experiences available for reflection

MAS & RS

Multiagent Systems

(Wooldridge, 2009) work in dynamic environments

Agents

multiple, independent, autonomous and goal-oriented

MAS & RS

Multiagent Systems

(Wooldridge, 2009) work in dynamic environments

Agents

multiple, independent, autonomous and goal-oriented Recommender Systems (Jannach et al., 2011) *filter information*

> Approaches Collaborative Filtering, Content-Based, Hybrid

Research Goals

Tasks

Collect

Extract

Represent

Share

Collect information from different sources (Paliouras et al., 2008)

Extract

Represent

Share

Tasks

Collect

Extract information from the news (Ritter et al., 2011; Li et al., 2011)

Represent

Share

Tasks

Collect

Extract

Represent the extracted information into a structured representation (Sacco and Bothorel, 2010; IJntema et al., 2010)

Share

Tasks

Collect

Extract

Represent

Share information between users, such as users' preferences and emotional features (González et al., 2002; Stickel et al., 2009; Yu et al., 2011)

Research Goals

Tasks

Collect

Extract

Represent

Share

Deliver information based on the learned preferences and expected human's intentions (Knijnenburg et al., 2011; Lops et al., 2011; Costa et al., 2012)

Approach

Costa et al. (CISUC)

Emotion-Based News RS's Architecture

Data Aggregation

- capable of gathering information from a wide number of Web sources
- responsible for the information's quantity and quality

http://dmir.inesc-id.pt/project/SentiLex-PT_02
http://ontopt.dei.uc.pt
3
http://dbpedia.org
Costa et al. (CISUC) PAAMS'13

Data Aggregation

- capable of gathering information from a wide number of Web sources
- responsible for the information's quantity and quality

Information Extraction

- automatically extract the most relevant terms
- terms polarity, e.g., ML algorithms and SentiLex¹

http://dmir.inesc-id.pt/project/SentiLex-PT_02
http://ontopt.dei.uc.pt
3
http://dbpedia.org
Costa et al. (CISUC) PAAMS'13

Data Aggregation

- capable of gathering information from a wide number of Web sources
- responsible for the information's quantity and quality

Information Extraction

- automatically extract the most relevant terms
- terms polarity, e.g., ML algorithms and SentiLex¹

pre-filter

keyphrase extraction algorithm post-filter

¹ http://dmir.inesc-id.pt/project/SentiLex-PT_02
2 http://ontopt.dei.uc.pt
3 http://dbpedia.org
Costa et al. (CISUC) PAAMS'13

Data Aggregation

- capable of gathering information from a wide number of Web sources
- responsible for the information's quantity and quality

Information Extraction

- automatically extract the most relevant terms
- terms polarity, e.g., ML algorithms and SentiLex¹

pre-filter

stopwords, POS tagger or grammars (Costa, 2010)

keyphrase extraction algorithm

post-filter

e.g., discard verbs and rate the keyphrases ($Onto.PT^2$ and $DBpedia^3$)

Emotion-Based News RS's Architecture

Knowledge Base

Traditional Database

Costa et al. (CISUC)

Knowledge Base

Traditional Database

- store
 - ★ the gathered information
 - ★ users' feedback
 - ★ community trends
- perform
 - ★ tests
 - ★ debug

Ontology

Knowledge Base

Traditional Database

- store
 - ★ the gathered information
 - ★ users' feedback
 - ★ community trends
- perform
 - ★ tests
 - ★ debug

Ontology

- represent structured information, i.e., keyphrases and their relations
- infer new knowledge, e.g., main topics by using clustering algorithms (to reduce the cold-start problem (Schein et al., 2002))

Emotion-Based News RS's Architecture

Personal Assistant Agents

User's preferences

Costa et al. (CISUC)

Personal Assistant Agents

User's preferences

User's feedback

Validation

Validation

Knowledge Extracted

System's Recommendations

Extraction Methods and Knowledge Extracted

Manual Evaluation

using a reliable sample size

Validation

Extraction Methods and Knowledge Extracted

Manual Evaluation

using a reliable sample size

Information Retrieval Methods

- quality
 - ★ amount of keyphrases that are correctly identified (precision)
- quantity
 - * amount of keyphrases among those that should have been extracted (recall)

Validation

Recommender's Evaluation

Quality and Quantity

Performance

Usability

Costa et al. (CISUC)

Recommender's Evaluation

Quality and Quantity

- users' feedback
- IR methods, e.g., precision, recall and F_1

Performance

Usability

Recommender's Evaluation

Quality and Quantity

- users' feedback
- ▶ IR methods, e.g., precision, recall and F₁

Performance

- time the system consumes while executing the expected tasks
- system scales and keeps responding under different circumstances

Usability

Recommender's Evaluation

Quality and Quantity

- users' feedback
- IR methods, e.g., precision, recall and F₁

Performance

- time the system consumes while executing the expected tasks
- system scales and keeps responding under different circumstances

Usability

 questionnaires to identify interface needs and assess the users' satisfaction

Make a comparative view of the most common algorithms used to identify keyphrases and clusters

Make a comparative view of the most common algorithms used to identify keyphrases and clusters

Study the most suitable metrics to quantify and quality the information extracted

Make a comparative view of the most common algorithms used to identify keyphrases and clusters

Study the most suitable metrics to quantify and quality the information extracted

Define dynamic users' models to work in real-time

Expected Contributions

Study the impact of sharing information among the users Does the introduction of collaborative recommendations improve the users' trust and usage?

Study the impact of sharing information among the users Does the introduction of collaborative recommendations improve the users' trust and usage?

Make freely available

the Knowledge Base, as well as the final Application

Expected Contributions

Study the impact of sharing information among the users Does the introduction of collaborative recommendations improve the users' trust and usage?

Make freely available

the Knowledge Base, as well as the final Application

Analyse if the affect-based PAA avoid their human owners from receiving irrelevant or emotionless information

Deployment and Advertisement

Collect Feedback

▶ ResearchGate⁴, Forum-LP⁵, Corpora List⁶, Linguist List⁷

4 https://www.researchgate.net 5 forum-lp@di.fct.unl.pt 6 corpora@uib.no 7 linguistlinguistlist.org Costa et al. (CISUC)

Deployment and Advertisement

Collect Feedback

▶ ResearchGate⁴, Forum-LP⁵, Corpora List⁶, Linguist List⁷

Website

- get information about the project
- download the Application
- browse and search the Knowledge Base
- provide feedback

References

References I

- Bawden, D., Holtham, C., and Courtney, N. (1999). Perspectives on information overload. Aslib Proceedings, 51(8):249-255.
- Costa, H. (2010). Automatic Extraction and Validation of Lexical Ontologies from text. Master's thesis, University of Coimbra, Faculty of Sciences and Technology, Department of Informatics Engineering, Coimbra, Portugal.
- Costa, H., Furtado, B., Pires, D., Macedo, L., and Cardoso, A. (2012). Context and Intention-Awareness in POIs Recommender Systems. In RecSys'12, 4th Workshop on Context-Aware Recommender Systems (CARS'12). ACM.
- González, G., Lopez, B., and Rosa, J. L. D. L. (2002). The Emotional Factor: An Innovative Approach to User Modelling for Recommender Systems. In AH2002, Recommendation and Personalization in e-Commerce, pages 90–99, Malaga, Spain.
- IJntema, W., Goossen, F., Frasincar, F., and Hogenboom, F. (2010). Ontology-Based News Recommendation. In 2010 EDBT/ICDT Workshops, EDBT'10, pages 16:1–16:6, NY, USA. ACM.
- Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2011). Recommender Systems: An Introduction. Cambridge University Press.
- Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall Series in Artificial Intelligence. Pearson Prentice Hall.
- Knijnenburg, B. P., Reijmer, N. J., and Willemsen, M. C. (2011). Each to his own: how different users call for different interaction methods in recommender systems. In *RecSys'11*, RecSys'11, pages 141–148, NY, USA. ACM.
- Li, L., Wang, D., Li, T., Knox, D., and Padmanabhan, B. (2011). SCENE: A Scalable Two-Stage Personalized News Recommendation System. In 34th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, SIGIR'11, pages 125–134, NY, USA. ACM.
- Lops, P., de Gemmis, M., Semeraro, G., Narducci, F., and Musto, C. (2011). Leveraging the Linkedin Social Network Data for Extracting Content-Based User Profiles. In RecSys'11, pages 293–296, NY, USA. ACM.
- Paliouras, G., Mouzakidis, A., Moustakas, V., and Skourlas, C. (2008). PNS: A Personalized News Aggregator on the Web. In Intelligent Interactive Systems in Knowledge-Based Environments, volume 104 of Studies in Computational Intelligence, pages 175–197. Springer, Berlin, Germany.

Picard, R. (1997). Affective Computing. MIT Press, MA, USA.

References II

- Ritter, A., Clark, S., Mausam, and Etzioni, O. (2011). Named Entity Recognition in Tweets: An Experimental Study. In Conf. on Empirical Methods in Natural Language Processing, EMNLP'11, pages 1524–1534, PA, USA. ACL.
- Sacco, O. and Bothorel, C. (2010). Exploiting Semantic Web Techniques for Representing and Utilising Folksonomies. In Int. Workshop on Modeling Social Media, pages 9:1–9:8, NY, USA. ACM.
- Schein, A., Popescul, A., Ungar, L., and Pennock, D. (2002). Methods and Metrics for Cold-Start Recommendations. In 25th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pages 253–260, NY, USA. ACM.
- Stickel, C., Ebner, M., Steinbach-Nordmann, S., Searle, G., and Holzinger, A. (2009). Emotion Detection: Application of the Valence Arousal Space for Rapid Biological Usability Testing to Enhance Universal Access. In Universal Access in Human-Computer Interaction. Addressing Diversity, volume 5614 of Lecture Notes in Computer Science, chapter 70, pages 615–624. Springer, Berlin, Germany.
- Wooldridge, M. (2009). An Introduction to MultiAgent Systems. Wiley.
- Yu, L., Pan, R., and Li, Z. (2011). Adaptive Social Similarities for Recommender Systems. In RecSys'11, pages 257–260, NY, USA. ACM.

The

End

