Automatic Extraction and Validation of Lexical Ontologies from text

Hernani Costa

hpcosta@student.dei.uc.pt

Cognitive & Media Systems Group CISUC, University of Coimbra

Coimbra, September, 2010

Introduction

- System Architecture
- Experimental Work
- Conclusions and Future Work

Understanding the meaning of natural language

- For making people and machines communicate
 - tools capable of exchanging well-defined and unambiguous information
 - manipulation of natural language
 - encoding it into a formal language

- Attempts to formalise semantic knowledge in a kind of lexical ontology (Princeton WordNet (Fellbaum (1998)))
- Similar resources for Portuguese (WordNet.BR (Dias-da-Silva (2006))), WordNet.PT (Marrafa et al. (2006)))

Introduction

- Knowledge bases are useful resources for NLP, however...
- Their creation and maintenance involves intensive human effort
- Automatic creation/enrichment from textual resources is an alternative
 - ▶ Higher coverage, easier update, but...
 - Precision is lower
 - ▶ Evaluation requires once again intensive human labour!

Information extraction (IE)

Automatic extraction of structured information from natural language inputs.

- "A car is a vehicle that has an engine and aims to move planets."
 - vehicle HYPERNYM_OF car
 - engine PART_OF car
 - car PURPOSE_OF move planets

How to automatically validate semantic knowledge?

- "A car is a vehicle that has an engine and aims to move planets."
 - √ vehicle HYPERNYM_OF car
 - √ engine PART_OF car
 - x car PURPOSE_OF move planets

Information retrieval (IR)

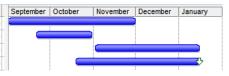
Locating specific information in natural language resouces.

- Approaches based on the occurrence of words in documents
- Distributional similarity metrics
 - Corpus Distributional Metrics
 - ★ Cocitation (Small (1973))
 - ★ LSA (Deerwester et al. (1990))
 - ★ PMI-IR (Turney (2001))
 - * ...
 - Web Distributional Metrics (Bollegala et al. (2007))
 - ★ WebJaccard
 - ★ WebOverlap
 - ★ WebDice
 - *

Goals

- Discovery of new lexico-syntactic patterns (automatically and by observation)
- System capable of:
 - extract written data from textual resources
 - extract semantic information from unstructured text
 - infer new knowledge based on compound nouns
 - validate and evaluate semantic knowledge

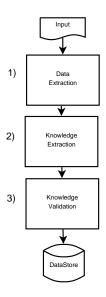
Hybrid system (linguistic + statistic)


Compare knowledge-bases

Research planning

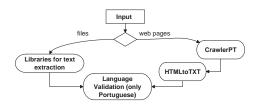
1st semester

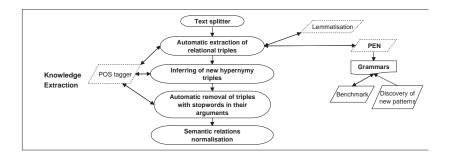
	Task Name	Duration
1	Bibliography Revision	65 days
2	Discovery of patterns	30 days
3	First System Prototype	55 days
4	Thesis Proposal	65 days



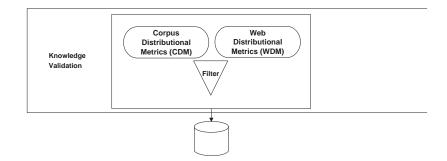
2nd semester

	Task Name	Duration
1	Process Diagram Elaboration	4 days
2	First System Prototype	65 days
3	Second System Prototype	35 days
4	Studying System Improvements	11 days
5	Comparing Knowledge-bases	12 days
6	Final Thesis Elaboration	60 days



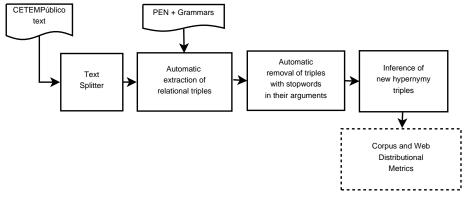

1) Data Extraction modules

- Extract written data from different textual resources
 - Docs, pdfs, rdf, txts, ...
 - Crawl data from the Web
- Only Portuguese data is considered



2) Knowledge Extraction

3) Knowledge Validation



Experimental Work

- Mowledge extraction from CETEMPúblico
- Knowledge extraction from Wikipedia abstracts
- Omparing prototype 1 to prototype 2
- Mowledge-bases comparison

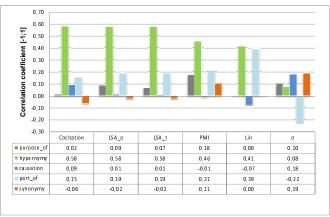
Experiment 1: knowledge extraction from CETEMPúblico

Experiment 1: knowledge extraction from CETEMPúblico

Set-up and Results

- CETEMPúblico¹ (Santos and Rocha (2001)) corpus, the annotated version
 - ▶ 28,000 documents
 - 30,100 unique content words (nouns, verbs and adjectives)
 - term-document matrix
 - term-term matrix
- Triples obtained

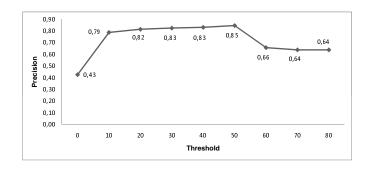
extracted: 20,308discarded: 5,844


▶ inferred: 2,492

▶ final triple set: 16,956

¹http://www.linguateca.pt/cetempublico

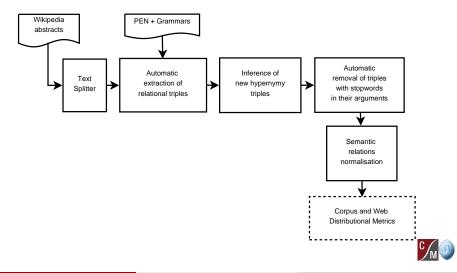
Manual Evaluation vs. Corpus Distributional Metrics


- term-document matrix statistically dominates term-term matrix on 89%
- term-term matrix statistically dominates term-document matrix on 72%

Metrics-based threshold

Increasing the threshold for hypernymy relation

- Threshold based on the Cocitation value
- Increased gradually for hypernymy triples
- 50 seems to be a good cut-point



18 / 31

Experiment 2: knowledge extraction - Wikipedia abstracts

System modules

Experiment 2: knowledge extraction - Wikipedia abstracts Set-up and Results

Wikipedia abstracts

- ▶ 37.898 sentences
- without named entities
- Triples obtained

extracted + inferred: 70,150

▶ discarded: 9,947

final triple set: 60,203

Studing Patterns Efficiency

Table: Quantity of triples extracted based on their indicative patterns.

Relation	Pattern		Evaluated			
		3	2	1	0	
Hypernymy	multi-word term	72	7	75	32	
	é uma espécie de	54	96	0	0	
	é um uma	87	11	0	15	
	é um género de	24	0	0	0	
Synonymy	ou	154	2	0	2	
	também conhecido a os as por como	60	4	0	4	
Part of	inclui incluem	34	0	2	15	
Part_oi	grupo de	17	3	1	0	
D	utilizado a os as para como em no na	71	16	1	20	
Purpose	usado a os as para como em no na	41	3	1	4	
Causation	causado a os as	27	11	1	10	

Caption:

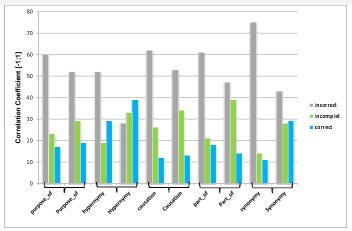
- $3 \Rightarrow$ correct $2 \Rightarrow$ contains strange entities
- $1\Rightarrow$ too general or specific $0\Rightarrow$ incorrect

Experiment 3: comparing prototype 1 to prototype 2

Set-up and Results

- System prototype 2 on CETEMPúblico
 - studying the system improvements
- Number of triples extracted from the CETEMPúblico corpus:

Table: Experiment 3 vs. Experiment 1.


Relation	Experiment 3	Experiment 1
Hypernymy	286,960	9,365
Causation	3,037	2,660
Purpose	3,779	3,288
Part_of	1,759	1,373
Synonymy	254	270
TOTAL	295,789	16,956

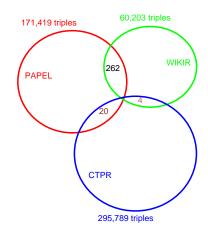
22 / 31

Experiment 3: comparing prototype 1 to prototype 2

Manual evaluation (first vs. second approach) percentages

Caption:

- lacktriangle Experiment 1 values ightarrow relation name starts with lowercase letter
- ightharpoonup Experiment 3 values ightharpoonup relation name starts with Uppercase letter ightharpoonup


Experiment 4: knowledge-bases comparison Set-up

- ullet CTPR o knowledge extracted from *Experiment 3*
- WIKIR \rightarrow knowledge extracted from *Experiment 2*
- ullet PAPEL o knowledge extracted from a dictionary (Gonçalo Oliveira et al. (2009))

Experiment 4: knowledge-bases comparison

- WIKIR: associated to the world and human knowledge
- CTPR: specific knowledge
- PAPEL: knowledge about the words and their meanings

- Common knowledge = C1 + C2
 - ightharpoonup C1 ightharpoonup common triples
 - ightharpoonup C2 ightharpoonup common triples but with different relation

Contributions

- Modules capable of interpreting text contained in different documents
- New indicative patterns to the semantic relations covered by our system (hypernymy, synonymy, part_of, purpose_of and causation)
- Method to infer hypernymy relations from compound nouns
- IR metrics applied to IE
- Automatic evaluation proposal (Web + lexico-syntactic patterns)
- Method to compare knowledge-bases

Publications

- ECAI² 2010, workshop LaTeCH³ 2010
 - Costa et al. (2010) (available through http://student.dei.uc.pt/~hpcosta/papers/ecai2010.pdf)
- INForum⁴ 2010
 - Gonçalo Oliveira et al. (2010) (available through http://student.dei.uc.pt/~hpcosta/papers/inforum2010.pdf)

²http://ecai2010.appia.pt

³http://ilk.uvt.nl/LaTeCH2010

⁴http://inforum.org.pt/INForum2010

Future Work

Besides more experimentations, also more ideas can be explored:

- Discovery on new semantic patterns
 - using a bigger corpus, such as the Web
- Extract semantic knowledge using machine learning techniques
 - more versatile as regards the variations in lexico-syntactic patterns
- Studying the better windows size
 - ▶ to understand how it influence the corpus distributional metrics results
- Weighting triples
 - using external resources to assign weights to the triples, or
 - weight the entities based on their occurrence in some textual resource
- Evaluation module
 - ▶ it would be interesting their deeper study

References I

- Bollegala, D., Matsuo, Y., and Ishizuka, M. (2007). *Measuring semantic similarity between words using web search engines*, pages 757–766. ACM Press, Proc. 16th International Conference on World Wide Web (WWW'07) edition.
- Costa, H., Gonçalo Oliveira, H., and Gomes, P. (2010). The Impact of Distributional Metrics in the Quality of Relational Triples. In *Proc. ECAI 2010, Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH'10).*
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). Indexing by Latent Semantic Analysis. *Journal of the American Society for Information Science*, 41:391–407.
- Dias-da-Silva, B. (2006). Wordnet.Br: an exercise of human language technology research. In *Proc. 3rd International WordNet Conference (GWC'06*), pages 22–26, Jeju Island, Korea.
- Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database (Language, Speech, and Communication). The MIT Press.
- Gonçalo Oliveira, H., Costa, H., and Gomes, P. (2010). Extracção de conhecimento léxico-semântico a partir de resumos da Wikipédia. In *Proc. 2nd INFORUM 2010 Workshop on Gestão e Tratamento de Informação (INFORUM'10)*.
- Gonçalo Oliveira, H., Santos, D., and Gomes, P. (2009). Relations extracted from a Portuguese dictionary: results and first evaluation. In Local Proceedings of the 14th Portuguese Conference on Artificial Intelligence (EPIA'09).

References II

- Marrafa, P., Amaro, R., Chaves, R. P., Lourosa, S., Martins, C., and Mendes, S. (2006). WordNet.PT new directions. In Sojka, P., Choi, K., Fellbaum, C., and Vossen, P., editors, *Proc. 3rd International WordNet Conference (GWC'06)*, pages 319–320.
- Santos, D. and Rocha, P. (2001). Evaluating CETEMPúblico, a free resource for portuguese. In *Proc. 39th Annual Meeting on Association for Computational Linguistics (ACL'01)*, pages 450–457, Morristown, NJ, USA. ACL.
- Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. *Journal of the American Society for Information Science*, 24(4):265–269.
- Turney, P. D. (2001). Mining the Web for Synonyms: PMI–IR versus LSA on TOEFL. In Raedt, L. D. and Flach, P., editors, *Proc. 12th European Conference on Machine Learning (ECML'01)*, volume 2167, pages 491–502. Springer.

Thank you!

