The Impact of Distributional Metrics in the Quality of Relational Triples

Hernani Costa, Hugo Gonçalo Oliveira¹, Paulo Gomes

hpcosta@student.dei.uc.pt, {hroliv,pgomes}@dei.uc.pt

Cognitive & Media Systems Group CISUC, University of Coimbra

Lisbon, August 16, 2010

¹supported by FCT scholarship grant SFRH/BD/44955/2008

Outline

- Information Extraction
- Information Retrieval
- Research Goals

Approach

3 Experimentation

- Set-up
- Metrics adaptation
- Results
- Additional experimentation

4 Concluding remarks

• Knowledge bases (eg. WordNet) are useful resources for NLP

- Knowledge bases (eg. WordNet) are useful resources for NLP
- Their creation and maintenance involves intensive human effort

- Knowledge bases (eg. WordNet) are useful resources for NLP
- Their creation and maintenance involves intensive human effort
- Automatic creation/enrichment from textual resources is an alternative

- Knowledge bases (eg. WordNet) are useful resources for NLP
- Their creation and maintenance involves intensive human effort
- Automatic creation/enrichment from textual resources is an alternative
 - Higher coverage, easier update, but...

- Knowledge bases (eg. WordNet) are useful resources for NLP
- Their creation and maintenance involves intensive human effort
- Automatic creation/enrichment from textual resources is an alternative
 - Higher coverage, easier update, but...
 - Precision is lower

- Knowledge bases (eg. WordNet) are useful resources for NLP
- Their creation and maintenance involves intensive human effort
- Automatic creation/enrichment from textual resources is an alternative
 - Higher coverage, easier update, but...
 - Precision is lower
 - Evaluation requires once again intensive human labour!

Automatic extraction of structured information from natural language.

 "Car is a vehicle with 4 wheels and an engine, used for carrying a small number of passengers."

- "Car is a vehicle with 4 wheels and an engine, used for carrying a small number of passengers."
 - ► vehicle HYPERNYM_OF car

- "Car is a vehicle with 4 wheels and an engine, used for carrying a small number of passengers."
 - vehicle HYPERNYM_OF car
 - wheel PART_OF car
 - engine PART_OF car

- "Car is a vehicle with 4 wheels and an engine, used for carrying a small number of passengers."
 - vehicle HYPERNYM_OF car
 - wheel PART_OF car
 - engine PART_OF car
 - carrying_people PURPOSE_OF car

Information retrieval (IR)

Locating specific information in natural language resouces.

Information retrieval (IR)

Locating specific information in natural language resouces.

• Approaches based on the occurrence of words in documents.

Information retrieval (IR)

Locating specific information in natural language resouces.

- Approaches based on the occurrence of words in documents.
- Distributional similarity metrics
 - Cocitation (Small (1973))
 - LSA (Deerwester et al. (1990))
 - Lin's (Lin (1998))
 - PMI-IR (Turney (2001))
 - σ (Kozima and Furugori (1993))
 - <u>►</u> ...

Use IR metrics to improve IE precision

Adapt distributional metrics to determine words similarity

- Adapt distributional metrics to determine words similarity
- Wandmacher et al. (2007) and Cederberg and Widdows (2003) used LSA to weight hypernymy triples

- Adapt distributional metrics to determine words similarity
- Wandmacher et al. (2007) and Cederberg and Widdows (2003) used LSA to weight hypernymy triples
- What about other semantic relations?

- Adapt distributional metrics to determine words similarity
- Wandmacher et al. (2007) and Cederberg and Widdows (2003) used LSA to weight hypernymy triples
- What about other semantic relations?
- What metrics should be used?

- Adapt distributional metrics to determine words similarity
- Wandmacher et al. (2007) and Cederberg and Widdows (2003) used LSA to weight hypernymy triples
- What about other semantic relations?
- What metrics should be used?
- New combined metrics?

- Adapt distributional metrics to determine words similarity
- Wandmacher et al. (2007) and Cederberg and Widdows (2003) used LSA to weight hypernymy triples
- What about other semantic relations?
- What metrics should be used?
- New combined metrics?
- e Help manual evaluation

Approach

IE system

Costa, Gonçalo Oliveira & Gomes (CISUC)

Lisbon, August 16, 2010 7 / 21

Experimentation set-up

• CETEMPúblico² corpus (annotated version)

- 28,000 documents
- 30,100 unique context words (nouns, verbs and adjectives)
- term-document matrix

²http://www.linguateca.pt/cetempublico/

LaTeCH 2010

Experimentation set-up

• CETEMPúblico² corpus (annotated version)

- 28,000 documents
- 30,100 unique context words (nouns, verbs and adjectives)
- term-document matrix
- Triples obtained
 - Extracted: 20,308
 - Discarded: 5,844
 - Inferred: 2,492
 - Final triple set: 16,956

²http://www.linguateca.pt/cetempublico/

Costa, Gonçalo Oliveira & Gomes (CISUC)

LaTeCH 2010

For instance, Cocitation:

• First presented as a similarity metric between scientific papers (Small (1973))

$${\it Cocitation}(d_i,d_j) = {P(d_i \cap d_j) \over P(d_i \cup d_j)}$$
 (1)

For instance, Cocitation:

• First presented as a similarity metric between scientific papers (Small (1973))

$${\it Cocitation}(d_i,d_j) = {P(d_i \cap d_j) \over P(d_i \cup d_j)}$$
 (1)

• d_i, d_j represent two documents

For instance, Cocitation:

• First presented as a similarity metric between scientific papers (Small (1973))

$${\it Cocitation}(d_i,d_j) = {P(d_i \cap d_j) \over P(d_i \cup d_j)}$$
 (1)

- d_i, d_j represent two documents
- ► P(d_i ∩ d_j), is the number of documents in the collection referring both documents

For instance, Cocitation:

• First presented as a similarity metric between scientific papers (Small (1973))

$$\mathit{Cocitation}(d_i, d_j) = rac{P(d_i \cap d_j)}{P(d_i \cup d_j)}$$
 (1)

- d_i, d_j represent two documents
- ► P(d_i ∩ d_j), is the number of documents in the collection referring both documents
- ► P(d_i ∪ d_j), is the number of documents referring at least to one of the documents

$$\mathit{Cocitation}(e_i,e_j) = rac{\mathit{P}(e_i \cap e_j)}{\mathit{P}(e_i \cup e_j)}$$

(2)

$$Cocitation(e_i, e_j) = \frac{P(e_i \cap e_j)}{P(e_i \cup e_j)}$$

• e_i, e_j represent two entities (uni or multiword)

(2)

Costa, Gonçalo Oliveira & Gomes (CISUC)

$$Cocitation(e_i, e_j) = \frac{P(e_i \cap e_j)}{P(e_i \cup e_j)}$$
(2)

- e_i, e_j represent two entities (uni or multiword)
- $P(e_i \cap e_j)$, is the number of documents containing both entities

$$Cocitation(e_i, e_j) = \frac{P(e_i \cap e_j)}{P(e_i \cup e_j)}$$
(2)

- e_i, e_j represent two entities (uni or multiword)
- $P(e_i \cap e_j)$, is the number of documents containing both entities
- P(e_i ∪ e_j), is the number of documents containing at least one of the entities

Triples and metrics

Triple	Manual	Coc	LSA (oc)	LSA (tf-idf)	PMI	Lin	σ
nação SINONIMO_DE povo nation SYNONYM_OF people	2	4.21	7.92	8.21	66.65	55.12	35.79
violência CAUSADOR_DE estrago violence CAUSE_OF damage	2	1.60	4.38	4.47	63.90	29.51	43.82
palavra HIPERONIMO_DE beato word HYPERNYM_OF pietist	1	0.16	1.75	1.78	61.83	0	48.25
jogo FINALIDADE_DE preparar game PURPOSE_OF prepare	1	1.61	3.53	3.62	50.89	48.22	25.52
sofrer SINONIMO_DE praticar suffer SYNONYM_OF practice	0	0.73	1.34	1.37	52.04	27.77	34.25
atender FINALIDADE_DE moderno answer PURPOSE_OF modern	0	0.69	1.81	1.82	55.22	13.84	41.24

Manual validation of the results

Manual evaluation vs. Distributional metrics

• Some observations:

 \blacktriangleright Hypernymy is highly correlated with all metrics except σ

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics
- For purpose triples, PMI has a 0.18 correlation coefficient

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics.
- For purpose triples, PMI has a 0.18 correlation coefficient
 - ★ Hyponyms and hypernyms tend to co-occur more frequently than causes/effects or means/purposes

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics.
- For purpose triples, PMI has a 0.18 correlation coefficient
 - ★ Hyponyms and hypernyms tend to co-occur more frequently than causes/effects or means/purposes
- No conclusions taken for causation

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics.
- For purpose triples, PMI has a 0.18 correlation coefficient
 - ★ Hyponyms and hypernyms tend to co-occur more frequently than causes/effects or means/purposes
- No conclusions taken for causation
 - ★ Few correct triples

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics
- For purpose triples, PMI has a 0.18 correlation coefficient
 - ★ Hyponyms and hypernyms tend to co-occur more frequently than causes/effects or means/purposes
- No conclusions taken for causation
 - ★ Few correct triples
- Synonymy has low or negative correlation coefficients with the metrics

- Hypernymy is highly correlated with all metrics except σ
- Part-of is less, but also correlated with the former metrics
- For purpose triples, PMI has a 0.18 correlation coefficient
 - ★ Hyponyms and hypernyms tend to co-occur more frequently than causes/effects or means/purposes
- No conclusions taken for causation
 - ★ Few correct triples
- Synonymy has low or negative correlation coefficients with the metrics
 - ★ Few correct triples
 - In corpora, synonymous words do not co-occur frequently... *

Metrics-based threshold

• Threshold based on the Cocitation value

Costa, Gonçalo Oliveira & Gomes (CISUC)

Metrics-based threshold

- Threshold based on the Cocitation value
- Increased gradually for hypernymy triples

Metrics-based threshold

- Threshold based on the Cocitation value
- Increased gradually for hypernymy triples
- 50 seems to be a good cut-point

New combined metrics?

• Metrics learned with Weka

Table: Metrics with higher correlation coefficient.

Relation	Simple Linear	Corel	Isotonic	Corel
cause_of	(0.01* <i>o</i> +0.05)	0.12	-	-
purpose_of	(0.02*Pmi-0.6)	0.22	Pmi	0.24
hypernymy	(0.02*Cocitation+0.49)	0.56	Cocitation	0.66
part_of	(0.01*Lin+0.26)	0.28	Cocitation	0.38
synonymy	-	-	σ	0.22

New combined metrics?

Metrics learned with Weka

Table: Metrics with higher correlation coefficient.

Relation	Simple Linear	Corel	Isotonic	Corel
cause_of	(0.01* <i>o</i> +0.05)	0.12	-	-
purpose_of	(0.02*Pmi-0.6)	0.22	Pmi	0.24
hypernymy	(0.02*Cocitation+0.49)	0.56	Cocitation	0.66
part_of	(0.01*Lin+0.26)	0.28	Cocitation	0.38
synonymy	-	-	σ	0.22

• Best correlation selects the measure which minimises the squared error

Discrete classification

• Models obtained using a 10-fold cross-validation test

Discrete classification

- Models obtained using a 10-fold cross-validation test
 - ► J48 decision tree learned for purpose_of

Discrete classification

- Models obtained using a 10-fold cross-validation test
 - ► J48 decision tree learned for purpose_of
 - Classifies 59.1% of the purpose_of triples correctly

Additional experimentation

Instead of a *term-document* matrix...

- If a term-term matrix was used
- Context = sentence

Instead of a term-document matrix...

- If a term-term matrix was used
- Context = sentence
- Statistical dominance (considering hypernymy and part_of):
 - term-document vs. term-term = 89%
 - term-term vs. term-document = 72%

18 / 21

Costa, Gonçalo Oliveira & Gomes (CISUC)

• IE may benefit from the application of IR metrics

- IE may benefit from the application of IR metrics
 - At least concerning hypernymy and part-of relations

- IE may benefit from the application of IR metrics
 - At least concerning hypernymy and part-of relations
- Using either a *term-document* or a *term-term* matrix seems to suit our purpose.

- IE may benefit from the application of IR metrics
 - At least concerning hypernymy and part-of relations
- Using either a *term-document* or a *term-term* matrix seems to suit our purpose.
- What if the triples and the matrix were extracted from different sources?

- IE may benefit from the application of IR metrics
 - At least concerning hypernymy and part-of relations
- Using either a *term-document* or a *term-term* matrix seems to suit our purpose.
- What if the triples and the matrix were extracted from different sources?
- Future:
 - Use more documents of the corpus
 - Use another corpus
 - Web distributional metrics

- IE may benefit from the application of IR metrics
 - At least concerning hypernymy and part-of relations
- Using either a *term-document* or a *term-term* matrix seems to suit our purpose.
- What if the triples and the matrix were extracted from different sources?
- Future:
 - Use more documents of the corpus
 - Use another corpus
 - Web distributional metrics
 - ▶ Weight triples in available Portuguese lexical resources (eg. PAPEL)

The end

References

- Cederberg, S. and Widdows, D. (2003). Using LSA and noun coordination information to improve the precision and recall of automatic hyponymy extraction. In *Proc. 7th (CoNLL)*, pages 111–118. Association for Computational Linguistics.
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). Indexing by latent semantic analysis. *Journal of the American Society for Information Science*, 41:391–407.
- Kozima, H. and Furugori, T. (1993). Similarity between words computed by spreading activation on an english dictionary. In *Proc. 6th EACL*, pages 232–239. ACL.
- Lin, D. (1998). An information-theoretic definition of similarity. In *Proc. 15th ICML*, pages 296–304. Morgan Kaufmann.
- Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. *Journal of the American Society for Information Science*, 24(4):265–269.
- Turney, P. D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In *Proc. 12th ECML*, volume 2167, pages 491–502. Springer.
- Wandmacher, T., Ovchinnikova, E., Krumnack, U., and Dittmann, H. (2007). Extraction, evaluation and integration of lexical-semantic relations for the automated construction of a lexical ontology. In Meyer, T. and Nayak, A. C., editors, *Proc. 3rd Australasian Ontology Workshop (AOW 2007)*, volume 85 of *CRPIT*, pages 61–69. ACS.

Thank you!

Questions?

Costa, Gonçalo Oliveira & Gomes (CISUC)

LaTeCH 2010