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Introduction

Introduction

Knowledge bases (eg. WordNet) are useful resources for NLP

Their creation and maintenance involves intensive human effort

Automatic creation/enrichment from textual resources is an
alternative

▶ Higher coverage, easier update, but...
▶ Precision is lower
▶ Evaluation requires once again intensive human labour!
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Introduction Information Extraction

Information extraction (IE)

Automatic extraction of structured information from natural language.

“Car is a vehicle with 4 wheels and an engine, used for carrying a
small number of passengers.”

▶ vehicle HYPERNYM OF car
▶ wheel PART OF car
▶ engine PART OF car
▶ carrying people PURPOSE OF car
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Introduction Information Retrieval

Information retrieval (IR)

Locating specific information in natural language resouces.

Approaches based on the occurrence of words in documents.

Distributional similarity metrics

▶ Cocitation (Small (1973))
▶ LSA (Deerwester et al. (1990))
▶ Lin’s (Lin (1998))
▶ PMI-IR (Turney (2001))
▶ � (Kozima and Furugori (1993))
▶ ...
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Introduction Research Goals

Goals

1 Use IR metrics to improve IE precision
▶ Adapt distributional metrics to determine words similarity

▶ Wandmacher et al. (2007) and Cederberg and Widdows (2003) used
LSA to weight hypernymy triples

▶ What about other semantic relations?
▶ What metrics should be used?
▶ New combined metrics?

2 Help manual evaluation
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Approach

IE system

Corpus

Grammars

Extraction of
relational triples

Additional 
extraction of triples

Removal of triples
with stopwords

Metrics
application

Lemmatisation
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Experimentation Set-up

Experimentation set-up

CETEMPúblico2 corpus (annotated version)
▶ 28,000 documents
▶ 30,100 unique context words (nouns, verbs and adjectives)
▶ term-document matrix

Triples obtained

▶ Extracted: 20,308
▶ Discarded: 5,844
▶ Inferred: 2,492
▶ Final triple set: 16,956

2http://www.linguateca.pt/cetempublico/
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Experimentation Metrics adaptation

Similarity between two documents

For instance, Cocitation:

First presented as a similarity metric between scientific papers (Small
(1973))

Cocitation(di , dj ) =
P(di ∩ dj )

P(di ∪ dj )
(1)

▶ di , dj represent two documents
▶ P(di ∩ dj ), is the number of documents in the collection referring both

documents
▶ P(di ∪ dj ), is the number of documents referring at least to one of the

documents
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Experimentation Metrics adaptation

Adaptation to measure word similarity

Cocitation(ei , ej ) =
P(ei ∩ ej )

P(ei ∪ ej )
(2)

ei , ej represent two entities (uni or multiword)

P(ei ∩ ej ), is the number of documents containing both entities

P(ei ∪ ej ), is the number of documents containing at least one of the
entities
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Experimentation Results

Triples and metrics

Triple Manual Coc LSA (oc) LSA (tf-idf) PMI Lin �

nação SINONIMO DE povo
2 4.21 7.92 8.21 66.65 55.12 35.79

nation SYNONYM OF people
violência CAUSADOR DE estrago

2 1.60 4.38 4.47 63.90 29.51 43.82
violence CAUSE OF damage

palavra HIPERONIMO DE beato
1 0.16 1.75 1.78 61.83 0 48.25

word HYPERNYM OF pietist
jogo FINALIDADE DE preparar

1 1.61 3.53 3.62 50.89 48.22 25.52
game PURPOSE OF prepare

sofrer SINONIMO DE praticar
0 0.73 1.34 1.37 52.04 27.77 34.25

suffer SYNONYM OF practice
atender FINALIDADE DE moderno

0 0.69 1.81 1.82 55.22 13.84 41.24
answer PURPOSE OF modern
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Experimentation Results

Manual validation of the results
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Experimentation Results

Manual evaluation vs. Distributional metrics
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Experimentation Results

Some observations:

▶ Hypernymy is highly correlated with all metrics except �

▶ Part-of is less, but also correlated with the former metrics
▶ For purpose triples, PMI has a 0.18 correlation coefficient

★ Hyponyms and hypernyms tend to co-occur more frequently than
causes/effects or means/purposes

▶ No conclusions taken for causation

★ Few correct triples

▶ Synonymy has low or negative correlation coefficients with the metrics

★ Few correct triples
★ In corpora, synonymous words do not co-occur frequently...
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Experimentation Additional experimentation

Metrics-based threshold

Threshold based on the Cocitation value

Increased gradually for hypernymy triples
50 seems to be a good cut-point
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Experimentation Additional experimentation

New combined metrics?

Metrics learned with Weka

Table: Metrics with higher correlation coefficient.

Relation Simple Linear Corel Isotonic Corel

cause of (0.01*�+0.05) 0.12 - -

purpose of (0.02*Pmi-0.6) 0.22 Pmi 0.24

hypernymy (0.02*Cocitation+0.49) 0.56 Cocitation 0.66

part of (0.01*Lin+0.26) 0.28 Cocitation 0.38

synonymy - - � 0.22

Best correlation selects the measure which minimises the squared error
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Experimentation Additional experimentation

Discrete classification

Models obtained using a 10-fold cross-validation test

▶ J48 decision tree learned for purpose of
▶ Classifies 59.1% of the purpose of triples correctly
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Costa, Gonçalo Oliveira & Gomes (CISUC) LaTeCH 2010 Lisbon, August 16, 2010 17 / 21



Experimentation Additional experimentation

Discrete classification

Models obtained using a 10-fold cross-validation test
▶ J48 decision tree learned for purpose of
▶ Classifies 59.1% of the purpose of triples correctly
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Experimentation Additional experimentation

Instead of a term-document matrix...

If a term-term matrix was used

Context = sentence

Statistical dominance (considering hypernymy and part of):

▶ term-document vs. term-term = 89%
▶ term-term vs. term-document = 72%
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Conclusions

IE may benefit from the application of IR metrics

▶ At least concerning hypernymy and part-of relations

Using either a term-document or a term-term matrix seems to suit
our purpose.

What if the triples and the matrix were extracted from different
sources?

Future:

▶ Use more documents of the corpus
▶ Use another corpus
▶ Web distributional metrics
▶ Weight triples in available Portuguese lexical resources (eg. PAPEL)
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The end

Thank you!

Questions?
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