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ABSTRACT
We describe an application of Macedo’s computational
model of selective attention for overcoming the problem
of information and interruption overload of intelligent
agents in travel information systems. This computational
model has been integrated into the architecture of a BDI
artificial agent so that this can autonomously select relevant,
interesting travel information of the (external or internal)
environment while ignoring other less relevant information.
The advantage is that the agent can communicate only that
interesting, selective information to its processing resources
(focus of the senses, decision-making, etc.) or to its human
owner’s processing resources so that these resources can
be allocated more effectively. We illustrate and provide
experimental results of this role of the artificial, selective
attention mechanism in the travel domain.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Information overload, Selective attention, Interest, Value
of information, Surprise, Uncertainty, Resource-bounded
agents, Personal agents

1. INTRODUCTION
The advent of information technology is a primary reason

for the abundance of information with which humans are
inundated, due to its ability to produce more information
more quickly and to disseminate this information to a
wider audience than ever before. Surprisingly, a lot
of recent studies confirmed what Toffler [36] predicted
a few decades ago: the overabundance of information
instead of being beneficial is a huge problem having many
negative implications not only in personal life but also
in organizations, business, and in general in the world

economy. In fact, research proves that the brain simply does
not deal very well with a multitasking process [12]. This
explains why decision quality and the rate of performing
tasks degrades with increases in the amount of information
being considered.

A fundamental strategy for dealing with this problem of
information overload [24] should include making devices that
incorporate themselves selective attention agents in order to
decrease the amount of information considered in their own
reasoning/decision-making processes or decrease the amount
of information provided by them to humans, preventing
these from a number of interruptions.

But how to model selective attention in artificial agents?
Although selective attention has been thoroughly researched
over the last 100 years in psychology and more recently
in neuroscience (e.g., [10, 38]), at present there is no
general theory of selective attention. Instead there are
specific theories for specific tasks such as orienting, visual
search, filtering, multiple action monitoring (dual task), and
multiple object tracking.

In spite of this, a number of models of selective
attention has been proposed in Cognitive Science (e.g., [9,
21]). Particularly related with these models is the issue
of measuring the value of information. A considerable
amount of literature has been published on these measures,
especially from the fields of active learning and experimental
design. Most of those measures rely on assessing the utility
or the informativeness of information (e.g., [8, 20, 13, 33]).
However, little attention has been given to the surprising and
motive congruence value of information, giving the beliefs
and desires of an agent.

Macedo, Reisenzein and Cardoso (e.g., [16, 19]), and
Lorini and Castelfranchi [14] proposed, independently,
computational models of surprise that are based on
the mechanism that compares newly acquired beliefs to
preexisting beliefs. Both models of artificial surprise were
influenced by psychological theories of surprise (e.g., [23]),
and both seek to capture essential aspects of human surprise
(see for a comparison [18]).

In this paper we describe the application of Macedo’s
artificial selective attention mechanism [15] to travel
information systems. In our approach, artificial agents of
travel information systems make use of that mechanism
so that only cognitively and affectively, interesting/relevant
travel information is selected and forwarded to drivers. The
selective attention mechanism relies on the psychological and
neuroscience studies about selective attention which defend



that variables such as unexpectedness, unpredictability,
surprise, uncertainty, and motive congruence demand
attention (e.g., [2, 10, 25]).

The next section presents an overview of Macedo’s
computational model of selective attention. Section 3
illustrates how this selective attention mechanism can
be used for filtering irrelevant information in the travel
domain. Section 4 examines the performance of the selective
attention mechanism as well as its role on the decrease of
unnecessary information. Finally, in Section 5 we present
conclusions.

2. SELECTIVE ATTENTION AGENT
Selective attention may be defined as the cognitive process

of selective allocation of processing resources (focus of
the senses, etc.) on relevant, important or interesting
information of the (external or internal) environment while
ignoring other less relevant information. The issue is how to
measure the value of information. What makes something
interesting?

Macedo [15] developed previously an architecture for
a personalized, artificial selective attention agent (see
Figure 1). It is assumed that: (i) this agent interacts with
the external world receiving from it information through
the senses and outputs actions through its effectors; (ii)
the world is described by a large amount of statistical
experiments; (iii) the agent is a BDI agent [27], exhibiting
a prediction model (model for generating expectations, i.e.,
beliefs about the environment), a desire strength prediction
model (a model for generating desire strengths for all the
outcomes of the statistical experiments of the world that are
known given the desires of the agent – profile of the agent
which include basic desires), as well as the intentions (these
define the profile of the agent); (iv) the agent contains other
resources for the purpose of reasoning and decision-making.

The first of the modules of the architecture (module 1 in
Figure 1) is concerned with getting the input information.
The second is the computation of the current world
state. This is performed by generating expectations or
assumptions (module 2), based on the knowledge stored
in memory, for the gaps of the environment information
provided by the sensors (module 1). We assume that
each piece of information resulting from this process, before
it is processed by other cognitive skills, goes through
several sub-selective attention devices, each one evaluating
information according to a certain dimension such as
surprise (module 4), uncertainty (module 5), and motive-
congruence/incongruence – happiness (module 6). For
this task the selective attention mechanism takes into
account some knowledge container (memory — preexisting
information (module 7)), and the intentions and desires
(motives — module 8). There is a decision-making module
(module 9) that takes into account the values computed by
those sub-selective attention modules and decides if a piece
of information is relevant/interesting or not. Then, this
module of decision-making selects the more relevant pieces
of information so that other resources (reasoning, decision-
making, displaying, communication resources, etc.) (module
10) can be allocated to deal with them.

The process of making the right decision depends heavily
on a good model of the environment that surrounds agents.
This is also true for deciding in which information should
the agent focus. Unfortunately, the real world is not crystal
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Figure 1: Architecture of an artificial selective attention
agent.

clear to agents. Agents almost never have access to the
whole environment, mainly because of the incompleteness
and incorrectness of their perceptual and understanding
components. In fact, it is too much work to obtain all
the information from a complex and dynamic world, and
it is quite likely that the accessible information suffers
distortions. Nevertheless, since the success of agents
depends heavily on the completeness of the information of
the state of the world, they have to pursue alternatives to
construct good models of the world even (and especially)
when this is uncertain. According to psychologists, cognitive
scientists, and ethologists [11, 26], humans and, in general,
animals attempt to overcome this limitation through the
generation of assumptions or expectations to fill in gaps in
the present or future observational information. When the
missing information, either of the present state of the world
or of the future states of the world, becomes known to the
agent, there may be an inconsistency or conflict between
it and the assumptions or expectations that the agent has.
As defended by Reisenzein [28], Gardenfors [7], Ortony and
Partridge [25], etc., the result of this inconsistency gives rise
to surprise which in our model of selective attention and
according to previous studies plays a central role in selective
attention. It also gives rise to the process of updating beliefs,
called belief revision (e.g., [6]).

The representation of the memory contents (beliefs) relies
on semantic features or attributes much like in semantic
networks [31] or schemas [30]. Each attribute, attri,
viewed by us as a statistical experiment, is described
by a probabilistic distribution, i.e., a set Ai = {<
valuej , probj , desireStrengthj >: j = 1, 2, . . . , n}, where n
is the number of possible values of the attribute, P (attri =
valuej) = probj , and desireStrengthj is the desirability of
attri = valuej (for a related work see [29]).

While the belief strengths are inferred from data using
a frequentist approach and updated as new information is
acquired, the desirability of the outcomes can be previously
set up or learned based on the intentions and contexts of the
agent on which it depends, suffering changes whenever the
agent is committed with a new intention and/or in a new
context. For modelling this dynamics, we make use a desire
strength prediction model, i.e., a model for generating desire
strengths for all the outcomes of the statistical experiments



of the world that are know given the desires of the agent, the
intentions, as well as the context of the user (for more details
see [5, 4]). As seen before, the desire strength is associated
with each attribute together with the belief strength.

Much like the motivation system of Clarion [35], the
module of desires encompasses explicit (goals) and implicit
motives (basic desires). Following the pluralist view of
motivation [22, 32, 37], the sub-module of basic desires
(basic motivations/motives) contains a set of basic desires
that drive the behaviour of the agent by guiding the agent
to reduce or to maximize a particular feeling [17]. Among
the basic desires we can find surprise and curiosity.

The module of feelings receives information about a state
of the environment and outputs the intensities of feelings.
Following Clore [3], we include in this module affective,
cognitive, and bodily feelings. The latter two categories are
merged to form the category of non affective feelings. This
means that this module is much broader than a module of
emotion that could be considered. Feelings are of primary
relevance to influence the behavior of an agent, because
computing their intensity the agent measures the degree to
which the desires are fulfilled. In this paper, we highlight
the feelings of surprise and pleasantness/unplesantness.

Although the architecture of the computational model of
selective attention includes all those above-mentioned sub-
selective attention modules, we reserve some room in the
architecture of the model for other sub-selective attention
components, such as coping potential, complexity.

The next sub-sections describe each one of the dimensions
for evaluating information, namely surprise, uncertainty,
and motive congruence/incongruence. While the dimensions
of surprise and uncertainty are related to the value of
information to the belief store of the agent, the dimension
of motive congruence/incongruence is related to the value
of information to the goals/desires of the agent (these
dimensions are related to the concepts of cognitive and
affective feelings of [3] and belief-belief and belief-desire
comparators of [29]).

2.1 Surprise Value of Information
We adopted the computational model of surprise of

[16, 19] which is formally defined in Definition 1 (for
related models see [18]). Macedo, Cardoso and Reisenzein
computational model of surprise suggests that the intensity
of surprise about an event Eg, from a set of mutually
exclusive events E1, E2, . . . , Em, is a nonlinear function of
the difference, or contrast, between its probability and the
probability of the highest expected event Eh in the set of
mutually exclusive events E1, E2, . . . , Em.

Definition 1. Let (Ω, A, P ) be a probability space where
Ω is the sample space (i.e., the set of possible outcomes of
the experiment), A = A1, A2, .., An is a σ-field of subsets
of Ω (also called the event space, i.e., all the possible
events), and P is a probability measure which assigns a
real number P (F ) to every member F of the σ-field A.
Let E = {E1, E2, . . . , Em}, Ei ∈ A, be a set of mutually
exclusive events in that probability space with probabilities
P (Ei) >= 0, such that

∑m
i=1 P (Ei) = 1. Let Eh be the

highest expected event from E. The intensity of surprise
about an event Eg from E is given by:

S(Eg) = log(1 + P (Eh)− P (Eg)) (1)

The probability difference between P (Eh) and P (Eg) can
be interpreted as the amount by which the probability of Eg

would have to be increased for Eg to become unsurprising.

2.2 Uncertainty-based Value of Information
Information is a decrease in uncertainty which, according

to information theory, is measured by entropy [34]. When
new information is acquired its amount may be measured
by the difference between the prior uncertainty and the
posterior uncertainty.

Definition 2. Let (Ω, A, Pprior) be a probability space
where Ω is the sample space (i.e., the set of possible outcomes
of the experiment), A = A1, A2, .., Am is a σ-field of subsets
of Ω (also called the event space, i.e., all the possible events),
and Pprior is a probability measure which assigns a real
number Pprior(F ) to every member F of the σ-field A.
Let E = {E1, E2, . . . , Em}, Ei ∈ A, be a set of mutually
exclusive events in that probability space with probabilities
Pprior(Ei) >= 0, such that

∑m
i=1 Pprior(Ei) = 1. Let

Ppost be the posterior probability measure, after some data
is acquired, which assigns a real number Ppost(F ) to every
member F of the σ-field A such that it assigns Ppost(Ei) >=
0 with

∑m
i=1 Ppost(Ei) = 1. According to information

theory, the information gain of an agent after some data
is acquired, IG(E), is given by the decrease in uncertainty:

IG(E) = Hprior(E)−Hpost(E)

= −
m∑
i=1

Pprior(Ei)× log(Pprior(Ei))−

(−
m∑
i=1

Ppost(Ei)× log(Ppost(Ei))) (2)

Hpost = 0 if and only if all the Ppost(Ei) but one are
zero, this one having the value unity. Thus only when we
are certain of the outcome does Hpost vanish, otherwise it is
positive.
IG is not normalized. In order to normalize it we must

divide it by log(m) since it can be proved that IG ≤ log(m):

IG(E) =
Hprior(E)−Hpost(E)

log(m)
(3)

2.3 Motive Congruence/Incongruence-based
Value of Information

While the measure of surprise takes into account beliefs
that can be confirmed or not, the pleasantness function that
we describe in this subsection takes as input desires that,
contrary to beliefs, can be satisfied or frustrated. Following
the belief-desire theory of emotion [29], we assume that
an agent feels happiness if it desires a state of affairs (a
proposition) and firmly beliefs that that state of affairs
obtains. The intensity of happiness about an event is a
monotonically increasing function of the degree of desire of
that event as formally defined in Definition 4.

Definition 3. Let (Ω, A) be a measurable space where Ω
is the sample space (i.e., the set of possible outcomes of the
experiment) and A = A1, A2, .., Am a σ-field of subsets of
Ω (also called the event space, i.e., all the possible events).



We define the measure of desirability of an event on (Ω, A)
as D : A → [−1, 1], i.e., as a signed measure which assigns
a real number −1 ≤ D(F ) ≤ 1 to every member F of the σ-
field A based on the profile of the agent, so that the following
properties are satisfied:

• D(∅) = 0
• if A1, A2, . . . is a collection of disjoint members of A,

in that Ai ∩Aj = ∅ for all i 6= j, then

D(

∞⋃
i=0

Ai) =

∞∑
i=0

D(Ai) (4)

The triple (Ω, A,D) is called the desirability space.

Definition 4. Let (Ω, A, P ) and (Ω, A,D) be the
probability and the desirability spaces described, respectively,
in Definition 1 and Definition 3. Let E = {E1, E2, . . . , Em},
Ei ∈ A, be a set of mutually exclusive events in
that probability space with probabilities P (Ei) >= 0,∑m

i=1 P (Ei) = 1. If P (Eg) = 1, the intensity of happiness,
i.e., motive congruence, about an event Eg from E is given
by:

MC(Eg) = D(Eg) (5)

2.4 The Principle of Selective Attention
Having defined the motive, the uncertainty-based, and

surprise-based selective attention modules, we are now in
a position to formulate, in a restricted sense (without the
inclusion of other information measures such as complexity),
the principle that a resource-bounded rational agent should
follow in order to avoid an overabundance of information and
interruptions in the absence of a model for decision-making.
Note that if this model is known, the problem is reduced to
the classical computation of the value of information that
has been extensively studied (e.g., [8, 31]).

Definition 5. A resource-bounded rational agent should
focus its attention only on the relevant and interesting
information, i.e., on information that is congruent or
incongruent to its motives/desires, and that is cognitively
relevant because it is surprising or because it decreases
uncertainty.

We may define real numbers α, β, and γ as levels above
which the absolute values of motive congruency, surprise,
and information gain (decrease of uncertainty), respectively,
should be so that the information can be considered valuable
or interesting. These are what we called the triggering
levels of alert of the selective attention mechanism. Note
that, making one of those parameters null is equivalent to
removing the contribution of the corresponding component
from the selective attention mechanism (for a different
approach see Martinho and Paiva’s attention grabbing
mechanism [21] whose main feature is not relying on tuned
parameters but on expectation and prediction error).

3. PRACTICAL APPLICATION
The Selective Attention-based, Multi-Agent, Travel

Information System architecture (see Figure 4) we developed
involves a master agent and personal agents (for related
works on this domain see [1]). There is a personal selective

attention agent for each registered traveler. Each personal
agent models an user cognitively and motivationally and acts
on his/her behalf, i.e., each personal agent has information
about the expectations and desires of its owner based on
their travel history. The main role of the master agent is
collecting information from several information sources and
sending it to the personal agents so that they can selectively
deliver information to the several mobile devices owned by
humans.

Physically, the master and the personal agents might
inhabit in the same machine. This is the case of our system:
there is a server that accommodates both the master agent
and the personal agents. There is also an interface of the
personal agents that acts as a client and which is stored in
mobile devices owned by humans (see Figure 2).

(a) Main menu.
(b) Feedback menu.

(c) User context settings. (d) Selective attention filters.

Figure 2: iPOIs interface.

The Master Agent is responsible for starting, not only
the Web Agents, but also the Personal Assistant Agents
(PAAs), described in Figure 4 as PAA1 · · · PAAn. The Master

Agent is also responsible to reply the PAAs when they
ask for information about a specific POI. Although the



system is capable of retrieving POIs’ information from
several location-based services such as Foursquare API1 (a
location-based social network) and Bing Traffic API2 (that
provides information about traffic incidents and issues, e.g.,
construction sites and traffic congestion), for the purpose of
this work only the Foursquare service is used, which explains
why in this work we used only one Web Agent (WAfourquare).
As it can be seen in Figure 2a, the system shows all the POIs
retrieved from the system, taking into account the current
user’s context and intention (Figure 3), as well as his/her
selective attention preferences (Figure 2d). Clicking in each
POI’s icon, the user can see an information window with the
expected surprise and information gain values associated to
the price, schedule and day(s) off. One of the most relevant
feature of this interface is the menu presented in Figure
2b, where the user is allowed to give feedback about the
expectations of his PAA.
WAfoursquare implements several methods available through

the Foursquare API3, allowing it to start requesting for
POIs in a pre-defined geographical area. During this
process, it filters out all the POIs that do not belong to
the categories of concern, and stores the remaining POIs
in the system’s database (presented in Figure 4 as POIs

Database). This autonomous agent is constantly searching
for new information, and verifying if the data stored in the
database is up-to-date.

Context is the key to personalise recommendations made
by the PAAs for their users. Thus, a set of attributes need
to be defined in order to characterise the POI’s context,
as well as the user’s context and intentions. Since these
attributes need to be combined, an Android application,
named iPOIs, was been created to this purpose, i.e., to show
the current user location, his context and intention. The
main attributes used to define the user, the POI and the
information available in the interface are shown in Figure 3.

POI

category

dayOff

latitude

longitude

price

timetable

iPOIs application

distanceToPOI

currentTime

user

budget

dayOfWeek

intention

latitude

longitude

timeOfDay

Figure 3: Main attributes used to define the context of the
user, POI and the iPOIs application.

Possible values for each attribute of the POI’s context are:

• category = {food, shopping, nightlife},
actually we use the sub-category, e.g., food =
〈sandwichShop, vegetarian, etc.〉, shopping =
〈men’sApparel, women’sApparel, etc.〉 and
nightlife = 〈wineBar, disco, etc.〉

• dayOff = {a day of the week or combinations}

1https://developer.foursquare.com/
2http://msdn.microsoft.com/en-us/library/hh441725
3https://developer.foursquare.com

POIs
Database

user%s&selective&
a-ention&model

PAA_1

Master/Agent

PAA_n

User_n

WA_foursquare

User_1

...

...

...
WA_n

POIs' resources

user%s&selective&
a-ention&model

POIs' extra
information

recommendation/
feedback

recommendation/
feedback

Figure 4: System’s Architecture.

• price = {cheap, average, expensive}, e.g.,
for lunch {cheap≤5e; 5e>average≤7e;
expensive>7e}

• timetable = {morning, afternoon, night, or

combinations}

Possible values provided by the iPOIs interface are:

• distanceToPOI = {near≤ 200m; 200m >average≤
300m; far> 300m}

• currentTime = {current day of the week and

period of the day (morning, afternoon or

night)}

Possible values for each attribute of the user’s context are:

• budget = {low, medium, high}, e.g., for lunch
{low≤5e; 5e>medium≤7e; high>7e}

• dayOfWeek = {current day of the week}
• intention = {coffee, lunch, dinner, party},

e.g., drink coffee
in a {bakery, coffeeShop, etc.}, have lunch
and dinner in {burgers, BBQ, etc.} and party
in a {bar, disco, etc.}

• timeOfDay = {morning, afternoon or night}

Let us illustrate how the value of information is computed
by the selective attention mechanism. Suppose that a
traveller’s navigation system provided the information of a
specific POI, a restaurant denoted by A, for an agent (that
represents a driver) based on its profile (e.g., preference for
cheap restaurants). Suppose the agent has the following
expectations for the price of POI A, for a certain period/time
of the day for a certain day of the week: 60% of probability
of ”low price” (event E1), 30% of probability of ”moderate
price” (event E2), and 10% of probability of ”high price”
(event E3). Suppose the desire strengths of these events
are 1, -0.5, and -1, respectively. What is the relevance of
becoming aware that the price of restaurant A is low (event
E1)? Considering solely the motive-based component, the
outcomes (events E1, E2, and E3) elicits happiness (motive
congruence) with intensity 1, -0.5 and -1, respectively. E1 is
congruent/consistent with the goals of the agent, while E2

and E3 are incongruent with the goals of the agent.
According to Equation 1, the surprise value of E1, E2,

and E3 are, respectively, 0, 0.38, and 0.58. Illustrating for
the case of E3:

https://developer.foursquare.com


Surprise(E3) = log(1 + P (E1)− P (E3))

= log(1 + 0.6− 0.1) = 0.58 (6)

According to Equation 3, the normalized information gain
value of E1, E2, or E3 is:

IG(E) =
Hprior(E)−Hpost(E)

log(m)
=
Hprior(E)− 0

log(3)

=
−
∑3

i=1 Pprior(Ei)× log(Pprior(Ei))

log(3)

= 0.82 (7)

Assume the Principle of Selective Attention described
above, with parameters α = 0.3, β = 0.5, and γ = 0.6.
Are all these events interesting? Considering the motive-
based component all those events are interesting. However,
from the perspective of the surprise-based selective attention
component, the answer is ”no” to the question related with
the events E1 and E2 in that their surprise values, 0 and
0.38, respectively, are below β. With respect to E3 the
answer is ”yes” given that its surprise value is 0.58. Taking
the uncertainty-based component into account, the answer
is ”yes” for all the events because their occurrence gives a
normalized information gain of 0.82 which is above γ.

By filtering out information that seems to be
uninteresting, the selective attention mechanism prevents
an agent (and also its owner – a driver in this case) from
being interrupted so many times as in the absence of the
selective attention mechanism and consequently prevents
its reasoning/decision-making resources from dealing with
irrelevant information. But, is the quality of the decisions
of the driver affected by not receiving that presumably
irrelevant information? In other words, was the suppressed
information erroneously considered as irrelevant? If the
answer is ”yes”, we have a false negative. This error occurs
when we are making a negative inference which is actually
true. In the above example, if the information of the
occurrence of E3 was not revealed, the driver would have
stopped and enter restaurant A that might be less useful
than an alternative. The reverse can also happen: was the
provided information erroneously considered as relevant?
If the answer is ”yes”, we have a false positive or false
alarm. This error occurs when we are making a positive
inference which is actually false. This problem of knowing
the correctness of preventing an interruption is quite similar
to errors type I and II of statistical hypothesis testing. A
reasonable empirical way to answer these questions is by
comparing the classifications of the selective attention agent
to those of humans. This is the main goal of the experiment
described in the next section.

4. EXPERIMENT
We conducted an experiment to evaluate the performance

and the potential benefits of the personal selective attention
agent for filtering unnecessary information for its owner (a
human traveler). To do that we assessed its performance
considering the opinions of the human travelers, comparing
their classifications about whether some information is
relevant or not and the classifications of the selective
attention agent. The selective attention agent is considered

to perform erroneously if it filters a relevant information or
if it does not filter an irrelevant information.

The experimentation was performed in downtown of the
city of Coimbra, Portugal, which is characterized by a
high density and diversity of POIs. Furthermore, the type
of POIs considered were restricted to {Food, Shopping,

Nightlife} which are among the more frequent categories
in that region of the city. The number of sub-categories for
Food are 44, Shopping 8 and Nightlife 11, with 271, 10

and 84 different POIs, respectively. The extra information
manually gathered from these 365 places was the POI’s
price, the day off and the timetable.

This experiment can be divided into three different
evaluations. Firstly we made a manual evaluation, to
analyse the true relevance of the recommended POIs, and
calculated the exact agreement between the human judges.
Then, we performed a correlation analysis to compare the
selective attention values given by the PAAs with those of
the manual evaluation. Finally, we analysed the system
performance.

To test our approach, we used a set of real scenarios.
More precisely, in this experiment we used three different
locations with higher POIs density. The information
of these different locations was combined with different
situations (i.e., different user’s contexts and intentions).
Each one of these combinations is called a run.
For instance, r1 = [40.208934, -8.429067, Morning,

Sunday, Coffee] represents one of those runs in which it
can be seen the user’s GPS location, time of day, day of the
week and intention/goal. In this experiment, we analysed
13 runs in a total of 65 evaluated POIs4:
• 5 runs, goal: drink a coffee (25 evaluated POIs);
• 2 runs, goal: have lunch (10 evaluated POIs);
• 3 runs, goal: have dinner (15 evaluated POIs);
• 3 runs, goal: go party (15 evaluated POIs).

To perform this evaluation, we used the interface of the
iPOIs application, illustrated in Figure 2.

We asked 9 human judges to rate some POIs attributes
about the surprise and uncertainty-based value. The
attributes evaluated in the experiment were the POI’s price,
the POI’s schedule, the POI’s day(s) off and the POI as a
whole. Each human judge was asked to assign one value
to these attributes, considering their information gain and
surprise, using the scale ∅ to 5, where ∅ means that there
was no information gain (regarding its uncertainty-based
value) or no surprise (regarding the surprise intensity). We
then calculated the exact agreement (EA) between the human
judges used to calculate the coefficient correlation with the
values of surprise and information gain computed by the
artificial agents.

The EA among the judges (EA: 0%≤ EA≤ 100%), for all the
data evaluated, is presented in Table 1, where the attributes
price, schedule, day(s) off and all the attributes together are
presented as Price, Sche., D.Off and All, respectively.

Table 1: Exact agreement between the human judges.

Information gain Surprise

Price Sche. D.Off All Price Sche. D.Off All
100 98.58 97.61 100 100 97.61 96.64 100

The parallelism between the exact agreement of humans

4This evaluation, in average, took approximately 1 hour.



and the uncertainty and surprise-based values computed by
the artificial agent about the POIs’ attributes was quantified
by Spearman’s coefficient. This correlation coefficient give
us an idea on how these variables are correlated.

Table 2 shows these correlation coefficients between the
EA, given by the human judges, and the uncertainty and
surprise-based values computed by the artificial agent for
the four types of attributes considered, through the 13 runs.
As it can be seen, the results are promising. Although this
means that there exists a positive correlation in general,
some of them do not have a strong correlation value (for
instance, the surprise value for the POI’s attribute price).
This happens due the fact that the price was not so
surprising to the judges than the day(s) off. For example,
when the agent presents similar surprise expectation values
to cheap and average and the POI’s price is cheap, the judges
do not gave a high surprising value to this information. On
the other hand, the judges gave a high surprise value when
the POI is closed and the agent presents a low surprise
value to that specific day(s) off. The opposite occurs to the
importance that the judges gave to the uncertainty-based
value of the price.

Table 2: Correlation between the EA and the selective
attention models.

Information gain Surprise

Price Sche. D.Off All Price Sche. D.Off All
0.8459 0.4036 0.4218 0.6321 0.2557 0.5811 0.5218 0.4901

Finally, in the third part of the experiment, we performed
an information retrieval task, where the uncertainty and the
surprise components (named α and β, respectively) was used
to analyse the system’s performance. To do that, we used
the α’s and β’s average (i.e., α and β), from the 13 runs, for
the four POI’s attributes analysed in this work. To measure
the quality and the quantity of POIs correctly selected,
precision, recall and F1 were computed in the following
manner:

Precision =
Selected correct POIs

Selected POIs
(8)

Recall =
Selected correct POIs

Total correct POIs
(9)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

For each component, Table 3 presents the resulting
precision, recall and F1 scores (expression 8, 9 and 10)
and the respective α’s and β’s used, where the attributes
price, schedule, day(s) off and all the attributes together are
presented as Price, Sche., D.Off and All, respectively.

As it can be seen, the selective attention components
performed similarly regarding the distinct attributes.
Nevertheless, the F1, on average, for the α component is
higher than the F1 average for the β (≈74.90% and≈62.36%,
respectively), which means that the uncertainty-based
component performs better than the surprise component
on average. Even though some of the F1 values show
low performance (e.g., the attribute price with β=0.9542
(34.78%)), most of them achieve high F1 (e.g., the attribute
price with the α=0.0625 (93.75%) or the attribute schedule
with the β=0.9180 (81.97%)). These results are promising,

Table 3: System’s performance for the two selective
attention components, with their respective α and β.

Precision (%) Recall (%) F 1 (%)

P
ri

ce α=0.0625 90.90 96.68 93.75
β=0.9542 24.24 61.54 34.78

S
c
h
e
. α=0.0975 93.93 52.54 67.39

β=0.9180 75.75 89.29 81.97

D
.O

ff α=0.0469 96.97 55.17 70.33
β=0.9342 60.61 83.33 70.18

A
ll α=0.0646 93.94 53.45 68.13

β=0.9429 45.45 100 62.50

supporting the idea of applying a computation model
of selective attention into location-based services, as an
alternative or an extension of traditional recommender
systems.

5. CONCLUSIONS
We presented an approach for filtering unnecessary

information. We found evidence indicating that the
mechanism contributes for decreasing the amount of
unnecessary information while maintaining acceptable the
performance of the owner (a human).

Besides, agents equipped with a selective attention filter
can be successful personal assistants of humans, integrated
for instance in mobile devices, so that their human users are
prevented from unnecessary interruptions. This may be of
high value in critical situations such as driving a car in that,
as reported by [8], numerous cognitive studies have provided
evidence of the problems in information processing exhibited
by humans when dealing with large amounts of information
such as that the speed at which humans perform tasks drops
as the quantity of information being considered increases,
and that the rate of performing tasks can be increased by
filtering irrelevant information.
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