
Poor Data Injector: Fault Model

Nuno Laranjeiro*, Seyma Soydemir* and Jorge Bernardino*†

*CISUC, Department of Informatics Engineering
University of Coimbra, Portugal

cnl@dei.uc.pt, seyma@student.dei.uc.pt
†Polytechnic of Coimbra, Portugal

jorge@isec.pt

1 Introduction

This document presents the Fault Model used with Poor Data Injector. Poor
Data Injector is a tool that mutates the original data coming from database,
according to a predefined set of mutations (i.e., this fault model). Instead
of the real data, the application will be fed with mutated data (poor data
quality). With this approach, Poor Data Injector tests the application and
uncovers software flaws in the web application, middleware, and libraries.

The Fault Model, which specifies in detail the mutations that can occur
according to the data type being used, is presented in the following tables.
Below is a brief description of each table.

• JDBC Data Grouping: The groups of data types that will be the
basis for the mutation tables are presented in Table 1. These groups were
obtained by taking into account the native data types of JDBC and Java,
and seeing how they interlink in order to create broader groups of data
types of the same class. The need for this table arose when creating Poor
Data Injector in Java, as a way to connect JDBC and Java (the language
of the mutations).

• String Data Mutations: The mutations for the String data type are
presented in Table 2, where the string ”John Smith” was used as the
example input.

• Integer Data Mutations: Table 3 shows the mutations defined for the
integer data types. The original input used for the ”Examples” column
was 123.

• Time Data Mutations: Table 4 presents the mutation for the Time data
types. The original input used for the ”Examples” column was 02:10:08.

1

It should be noted that values higher or lower than the limit of the fields
(hours, minutes, seconds) are considered valid in these mutations.

• Date Data Fault Model Table 5 presents the mutation for the Date
data types. The original input used for the ”Examples” column was 2020-
05-10. As happened with the Time data types, values higher or lower
than the limit of the fields (year, month, day) are considered valid in
these mutations.

• Timestamp Data Mutations: Table 6 presents the mutation for the
Timestamp data types. The original input used for the ”Examples” col-
umn was 2020-05-10 11:11:11.121212121. Once again, values higher or
lower than the limit of the fields are considered valid in these mutations.

• Boolean Data Mutations: Table 7 presents the mutation for the Boolean
data types. The original input used for the ”Examples” column was True.

• Decimal Data Mutations: Table 8 presents the mutation for the Dec-
imal data types. The original input used for the ”Examples” column was
123,13.

• Double Data Mutations: Table 9 presents the mutation for the Dou-
ble data types. The original input used for the ”Examples” column was
123,13.

• Binary Data Mutations: Table 10 presents the mutation for the Binary
data types. The original input used for the ”Examples” column was [10,
4, 5, 1, 149], where each position inside the array represent the value of
a byte (from 0 to 255).

• Object Data Mutations: Table 11 presents the mutation for the Object
data types. Due to the abstract definition of a Java object, and how
difficult it would be to represent in text, the example column is only filled
in the first mutation.

• Reference Data Mutations: Table 12 presents the mutation for the
Reference data types. Due to the abstract definition of a Java Reference,
and how difficult it would be to represent in text, the example column is
only filled in the first mutation.

2

2 Data Types

The glue that provides the interface between a Java program and the DBMS is
called JDBC (Java Database Connectivity). Despite the relatively high amount
of different data types supported by JDBC, most of them can be aggregated in
general groups (e.g., TINYINT, SMALLINT, INTEGER can be grouped into
Integer). After comparing the data types available in JDBC [1] and Java we
reached the following mapping (Table 1):

Table 1: Mapping between our self-defined groups, JDBC types and Java types
Group JDBC Type Java Type

String

CHAR
StringVARCHAR

LONGVARCHAR
CLOB Clob
DATALINK java.net.URL

Decimal
NUMERIC

java.math.BigDecimal
DECIMAL

Boolean
BIT

boolean
BOOLEAN

Integer

TINYINT byte
SMALLINT short
INTEGER int
BIGINT long

Double
REAL float
FLOAT double
DOUBLE double

Binary

BINARY
byte[]VARBINARY

LONGVARBINARY
BLOB Blob

Date DATE java.sql.Date
Time TIME java.sql.Time
Timestamp TIMESTAMP java.sql.Timestamp

Object
DISTINCT

(Depends on Object)
JAVA OBJECT

Reference REF Ref

Overall, there are 11 different groups of data types and each group can
aggregate more than 1 JDBC or Java data type. Sometimes different JDBC
types translate to the same type in Java. For each one of these 11 groups, a
table with the applicable mutations was built, and the implementation of those
mutations was done in Java code.

3

3 String Data Mutations
Table 2: Mutations for String data types

No Fault Description Argument Configuration Example

1 Replace by null value - - null

2 Replace by empty string - - “”

3 Replace by same size string
with non-printable characters

- - Aks9DLM34q

4
Add random nonprintable
characters to string

Position

Prefix \u0010John Smith

Middle (Random position) John\u0010 Smith

Suffix John Smith\u0010

Length Random between 1 and string's original size -

5
Replace by same size
alphanumeric string

Number of
characters

Random quantity of characters between 1 and the total number of alphabetic characters
minus 1. Randomly distributed among the available position Jo3n Smixh

6
Add random numeric
characters to string

Position

Prefix 0158John Smith

Middle (Random position) John01 S4mi5th

Suffix John Smith544

Length Random between 1 and string's original size - string's maximum size -

7
Convert alphabetic
characters to opposite case

Position

First character john Smith

Last character John SmitH

Random position John sMITH

First character of each word john smith

Last character of each word JohN SmitH

Random position in each word JOHn sMith

Length Random between 1 and string or word original size minus Position -

8 Insert whitespace
Position

Leading John Smith

Trailing John Smith

Random position between words John Smith

Quantity The amount of consecutive white space characters to insert -

9 Add characters to string

Position

Prefix ooJohn Smith

Middle (Random position) John Shhhmith

Suffix John Smithii

Quantity
Random between 1 and the string's original size. The new characters to add must be
present in original string.

 -

10 Add substring to string

Begin From 0 to the string's original size minus 1. -

Length From 1 to the string's original size minus Begin. -

New Position

Prefix ohnJohn Smith

Middle (Random position) Johnohn Smith

Suffix John Smithohn

11 Move substring

Begin From 0 to the string's original size minus 1. -

Length From 1 to the string's original size minus Begin. -

New Position

Prefix ohnJ Smith

Middle (Random position) J Sohnmith

Suffix J Smithohn

12 Remove substring
Begin From 0 to the string's original size minus 1.

J Smith
Length From 1 to the string's original size minus Begin.

13 Remove whitespace Position

Leading John Smith

Trailing John Smith

Random position between words JohnSmith

14 Delimited reverse
Begin From 0 to the string's original size minus 2. John Shtim

Length From 2 to the string's original size minus Begin

15
Replace by predefined SQL
string

-
Dictionary based: replace the string by a keyword or symbol such as SELECT, FROM, INSERT,
DELETE, UPDATE, ', ", SELECT

16 Replace with symbols - The string is replaced by a random symbol $

17 Misspelling -

Replace one word by a misspelled word (Dictionary-based) or in case of no match being
found, use a random single edit operation (insertion; deletion; substution of a single
character or transposition of two adjacent characters) over a randomly selected word

John Smtih

18 Replace with a limit size Size
Java's UTF maximum size -

Java's UTF maximum size +1 -

19
Replace with an imprecise
value

-
Dictionary based: Chooses a single random word and replaces it by the respective acronym
or abbreviation

J. Smith

20
Replace by specific type
string

-
Replace value with another data types (e.g., numeric, date, time, timestamp, boolean
mutations, to be defined)

30

21 Replace whitespaces by
symbols

- Replaces all the white spaces by symbols (_, . , %, $, €) John_Smith, John%Smith

22 Add extraneous data Position
Before PhD John Smith

After John Smith CEO

23 Replace by homonyms - Replaces one word by its homonym, when possible. allowed -> aloud

24 Replace by synonyms - Replaces one word by its synonym, when possible. happy -> cheerful

 4

4 Integer Data Mutations

Table 3: Mutations for Integer data types

No Fault Description Argument Configuration Example

1 Replace by random same size - - 145

2 Remove one random numeric character from data - - 13

3 Duplicate one of the numeric characters Position
From 0 to the numeric value's original size. Repeat digit will
be put in front of Position

1223

4 Invert two consecutive digits
Begin From 0 to the numeric value's original size minus 1

132
Length From 2 to the numeric value´s original size minus Begin

5 Add one numeric character Position Random 1123

6 Flip sign - Positive numbers become negative and vice-versa -123

7 Replace one random numeric character Position Random. 153

8 Add 1 - - 124

9 Substract 1 - - 122

5

5 Time Data Mutations

Table 4: Mutations for Time data types
No Fault Description Argument Configuration Example

1 Replace by null value - - null

2 Replace by empty dummy time - - 0:00:00

3 Replace by random time
Field

Hours field 7:10:08

Minutes field 2:52:08

Seconds field 2:10:25

Value Uniformly random between the maximum and minimum allowed value for the field -

4 Reverse field Field

Hours field 20:10:08

Minutes field 02:01:08

Seconds field 02:10:80

5 Add one extra digit Position

Before hours value 102:10:08

After hours value 021:10:08

Before minutes value 02:110:08

After minutes value 02:101:08

Before second value 02:10:108

After second value 02:10:081

6 Duplicate one digit Position

Before hours value 002:10:08

After hours value 022:10:08

Before minutes value 02:110:08

After minutes value 02:100:08

Before second value 02:10:008

After second value 02:10:088

7 Remove one digit
Field

Hours field 0:10:08

Minutes field 2:01:08

Seconds field 2:10:00

Position Random character -

6

6 Date Data Mutations

Table 5: Mutations for Date data types

No Fault Description Argument Configuration Example

1 Replace by null value - - null

2 Replace by empty dummy date - - 0000-00-00

3 Replace by random date

Field

Year field 2120-05-10

Month field 2020-08-10

Day field 2020-05-12

Value
Uniformly random between the maximum and minimum
allowed value for the field

 -

4 Add one extra digit Position

Before year value 12020-05-10

After year value 20201-05-10

Before month value 2020-105-10

After month value 2020-051-10

Before day value 2020-05-110

After day value 2020-05-101

5 Remove one digit Field

Year field 2000-05-10

Month field 2020-5-10

Day field 2020-05-01

6
Replace one digit with a random
digit

Field

Year field 2320-05-10

Month field 2020-08-10

Day field 2020-05-14

7 Invert digits in a field Field

Year field 2002-05-10

Month field 2020-50-10

Day field 2020-05-01

8 Swap values among fields

Source

Year field 05-2020-01

Month field 2020-10-05

Day field 10-05-2020

Target

Year field 10-05-2020

Month field 2020-10-05

Day field 10-05-2020

9 Replace with the default value Default date - 1970-01-01

10 Remove first 2 digits of year field - - 0020-05-10

11 Add 100 years - - 2120-05-10

12 Subtract 100 years - - 1920-05-10

13 Duplicate digit Field

Year field 20200-05-10

Month field 2020-055-10

Day field 2020-05-110

7

7 Timestamp Data Mutations

Table 6: Mutations for Timestamp data types

No Fault Description Argument Configuration Example

1 Replace by null timestamp - - null

2 Replace by empty dummy timestamp - - 0000-00-00 00:00:00.000000

3 Replace by random timestamp

Position

Year field 2012-05-10 11:11:11.121212

Month 2020-11-10 11:11:11.121212

Day field 2020-05-29 11:11:11.121212

Hour field 2020-05-10 02:11:11.121212

Minute field 2020-05-10 11:54:11.121212

Second field 2020-05-10 11:11:23.121212

Nanosecond field 2020-05-10 11:11:11.565654

Value Uniformly random between the maximum and

minimum allowed value for the field
 -

4 Reverse field Field

Year field 0202-05-10 19:45:31.143684

Month 2020-50-10 19:45:31.143684

Day field 2020-05-01 19:45:31.143684

Hour field 2020-05-10 91:45:31.143684

Minute field 2020-05-10 19:54:31.143684

Second field 2020-05-10 19:45:13.143684

Nanosecond field 2020-05-10 19:45:31.486341

5 Add one extra character to timestamp Field

Before year value 12020-05-10 11:11:11.121212

After year value 20209-05-10 11:11:11.121212

Before month value 2020-205-10 11:11:11.121212

After month value 2020-051-10 11:11:11.121212

Before day value 2020-05-310 11:11:11.121212

After day value 2020-05-105 11:11:11.121212

Before hour value 2020-05-10 611:11:11.121212

After hour value 2020-05-10 114:11:11.121212

Before minute value 2020-05-10 11:711:11.121212

After minute value 2020-05-10 11:113:11.121212

Before second value 2020-05-10 11:11:411.121212

After second value 2020-05-10 11:11:119.121212

Before nanosecond value 2020-05-10 11:11:11.9121212

After nanosecond value 2020-05-10 11:11:11.1212128

6
Duplicate one character on timestamp

value
Position

Before year value 22020-05-10 11:11:11.121212

After year value 20202-05-10 11:11:11.121212

Before month value 2020-505-10 11:11:11.121212

After month value 2020-055-10 11:11:11.121212

Before day value 2020-05-110 11:11:11.121212

After day value 2020-05-101 11:11:11.121212

Before hour value 2020-05-10 111:11:11.121212

After hour value 2020-05-10 111:11:11.121212

Before minute value 2020-05-10 11:111:11.121212

After minute value 2020-05-10 11:111:11.121212

Before second value 2020-05-10 11:11:111.121212

After second value 2020-05-10 11:11:111.121212

Before nanosecond value 2020-05-10 11:11:11.2121212

After nanosecond value 2020-05-10 11:11:11.1212122

7 Add 100 years to the timestamp - - 2120-05-10 11:11:11.121212

8 Subtract 100 years from the timestamp - - 1920-05-10 11:11:11.121212

9 Remove 2 digits of the year field - - 20-05-10 11:11:11.121212121

 8

8 Boolean Data Mutations

Table 7: Mutations for Boolean data types

No Fault Description Argument Configuration Example

1 Replace by null value - - null

2 Flip value - True becomes False, and vice-versa FALSE

3 Set to True - - TRUE

4 Set to False - - FALSE

9

9 Decimal Data Mutations

Table 8: Mutations for Decimal data types

No Fault Description Argument Configuration Example

1 Replace by null value - - null

2 Replace by random same-size decimal values - - 456,12

3 Add 1 - - 124,13

4 Substract 1 - - 122,13

5 Remove one random numeric character from data - - 13,13

6 Duplicate one of the numeric characters Position
Random from 0 to the numeric value's original size. Repeated digit
will be put in front of original digit

1223,13

7 Reverse two consecutive characters Position Random from 0 to the numeric value's original size minus 1 132,13

8 Add numeric character Position Random from 0 to the numeric value's original size 4123,13

9 Flip sign - Positive numbers become negative and vice-versa -123,13

10 Zero out the integer part - - 0,13

11 Zero out the fractional part - - 123,0

12 Remove the integer part - - 13,0

13 Remove the fractional part - - 123,0

14 Remove the decimal separator - - 12313,0

15 Add 10^-X X Random, from 1 to the limit of the type 123,14

16 Subtract 10^-X X Random, from 1 to the limit of the type 123,12

17 Shift decimal separator
Direction

Left 12,313

Right 1231,3

Amount One position, as long as there at is at least 1 digit in both sides -

18 Add 1 zero next to decimal separator Position
After decimal separator 123,013

Before decimal separator 1230,13

19 Swap fractional and integer parts - - 13,123

20 Reverse fractional part - - 123,31

21 Reverse integer part - - 321,13

22 Skipping decimal point near zero - - 12313,0

10

10 Double Data Mutations

Table 9: Mutations for Double data types

No Fault Description Argument Configuration Example

1 Replace by random same-size double values - - 456,12

2 Add 1 - - 124,13

3 Substract 1 - - 122,13

4 Remove one random numeric character from data - - 13,13

5 Duplicate one of the numeric characters Position From 0 to the numeric value's original size. Repeat digit will be put in front of Position 1223,13

6 Reverse two consecutive numeric characters Begin From 0 to the numeric value's original size minus 1 132,13

7 Add numeric character Position Random position 1223,13

8 Flip sign - Positive numbers become negative and vice-versa -123,13

9 Zero out the integer part - - 0,13

10 Zero out the fractional part - - 123,0

11 Remove the integer part - - 13,0

12 Remove the fractional part - - 123,0

13 Remove the decimal separator - - 12313,0

14 Add 10^-X X Random, from 1 to the limit of the type 123,14

15 Subtract 10^-X X Random, from 1 to the limit of the type 123,12

16 Shift decimal separator
Direction

Left 12,313

Right 1231,3

Amount One position, as long as there at is at least 1 digit in both sides -

17 Add a zero next to decimal separator Position
After decimal separator 123,013

Before decimal separator 1230,13

18 Swap fractional and integer parts - - 13,123

19 Reverse fractional part - - 321,13

20 Reverse integer part - - 123,31

21 Skipping decimal point near zero - - 12313

11

11 Binary Data Mutations

Table 10: Mutations for Binary data types

No Fault Description Argument Configuration Example

1 Replace by null value - - null

2 Replace by empty - - []

3 Add byte
Position

Prefix [1, 10, 4, 5, 149]

Middle (Random) [10, 4, 5, 1, 149]

Suffix [10, 4, 5, 149, 1]

Value Random from 0 to 255 -

4 Remove bytes
Position

Prefix [5, 149]

Middle (Random) [10, 149]

Suffix [10, 4]

Quantity Random from 1 to size of Binary - Position -

5 Duplicate byte Position

Prefix [10, 10, 4, 5, 149]

Middle (Random) [10, 4, 5, 5, 149]

Suffix [10, 4, 5, 149, 149]

6 Replace byte
Position

Prefix [6, 4, 5, 149]

Middle (Random) [10, 4, 6, 149]

Suffix [10, 4, 5, 6]

Value Random from 0 to 255 -

7 Drop X most significant bits X From 1 to 8 bits that make a byte [0, 0, 0, 16]

8 Drop X least significant bits X From 1 to 8 bits that make a byte [2, 4, 5, 5]

9 Flip sign bit of a byte Position

Prefix [138, 4, 5, 149]

Middle (Random) [10, 132, 5, 149]

Suffix [10, 4, 5, 21]

12

12 Object Data Mutations

Table 11: Mutations for Object data types

No Fault Description Argument Configuration Example

1 Replace by null object - - null

2 Replace by empty object - - -

3 Replace by object of different type - - -

13

13 Reference Data Mutations

Table 12: Mutations for Reference data types

No Fault Description Argument Configuration Example

1 Replace by null - - null

2 Replace by reference to object of different type - - -

14

References

[1] Thomas Mahler and Armin Waibel. Jdbc types, December 2012. https:

//db.apache.org/ojb/docu/guides/jdbc-types.html#mapping-table.

15

