
Clouds: A Module for Automatic Learning of Concept
Maps

Francisco Câmara Pereira and Amílcar Cardoso

{camara, amilcar}@dei.uc.pt
Centro de Informática e Sistemas da Universidade de Coimbra (CISUC)

Polo II – Pinhal de Marrocos
3030 Coimbra

Abstract. There are currently several interesting works on interactive concept map
construction. This simple representation of knowledge - the concept maps - is widely
accepted as a promising device for helping in complex tasks such as planning and
learning. Moreover, several psychologists (mainly from the constructivist stream)
argue that the use of concept maps in teaching can bring relevant improvements in
students. Nevertheless, as far as we know, these tools for interactive construction of
concept map diagrams have a passive role in the sense that their main concerns rely
upon interface and generality. If a Machine Learning based module was added to
such frameworks, the computer could have an active role in participating in the
concept map construction.
 This paper presents Clouds, a module that uses Inductive Learning methods to help
a user build her own concept maps. It uses each new entry on the map as an input for
the learning algorithms, which can be used later for suggesting new concepts and
relations.

1. Introduction

A concept map is a very simple diagrammatic representation of the way concepts relate to
each other in a domain. It consists on a directed graph in which arcs are relations and
nodes are concepts. Although elementary, this representation has already been studied and
applied in education with success [1]. Given its value and applicability, several
commercial concept map construction tools are already available (like Inspiration [2] or
Decision Explorer [3]), which are very interesting and diverse programs that help a user
organise and represent graphically his/her own concept maps. Their behaviour is
nevertheless essentially passive in the sense that there is no initiative in suggesting
concepts and relations to the user. If we get a mechanism for the apprehension of the way
one relates concepts, then we will be able to predict and have an active role in the
interaction.

Integrated in a MSc project [4], we developed a system, named Clouds, that uses Machine
Learning techniques to help a user to build concept maps. It uses each new entry (in the
form of new relations between concepts) as an input to two Inductive Learning
algorithms. Both aim to understand what characterises each relation. Then, as the
interaction goes on, it starts applying the learnt knowledge to ask and suggest for new
concepts and relations. This is an Artificial Intelligence based module that we believe can
be used for support in other applications that depend in structures similar to concept maps.

1. Using Inductive Learning Algorithms in Concept Map
Construction

Since the user enters information in the form of relations between concepts (e.g.
eat(monkey, banana), property(sun, yellow)), it makes sense to focus learning on getting
what characterises each relation, both in terms of its arguments and of the context that
surrounds it. We use two Inductive Learning algorithms to extract each of these features.
The first algorithm program aims at finding, for each relation, for pairs of categories that
it typically links (e.g. “trees typically produce fruit”). In order to do it, Clouds relies on a
taxonomic isa-list to find generalizations and specializations. The algorithm is very
simple: each time it receives an observation, it calculates the isa-lists involved and joins
the current hypothesis with the new observation. The leftmost intersections of both lists
yields a generalization.

produce(pear_tree, pear). {
[pear_tree, tree, plantae,..., entity, something]

[pear, fruit, plantae,..., entity, something]

produce(apple_tree, apple).{
[apple_tree, tree, plantae,..., entity, something]

[apple, fruit, plantae,..., entity, something]

produce(pear_tree, pear).

produce(apple_tree, apple).
generalization produce(tree, fruit).

Figure 2 – Intersecting the lists of “produce(pear_tree, pear)” and “produce(apple_tree, apple)”, and
selecting the leftmost elements (tree and fruit), yields a generalization “produce(tree, fruit)”.

The specialization occurs when a negative example is given. In this case, Clouds searches
down in the tree for the most general specializations that “avoid” this new observation.
The result of this, conversely to generalization, is to split the space into new hypothesis.
This divide and conquer results in a number of binary predicates that represents the pairs

of categories of the arguments that cover the positive examples and avoid the negative
ones.
The second algorithm is based on Inductive Logic Programming [5]. We implemented a
relation explanation generator that concentrates on the context of each argument.

produce

breathe

eat

eat drink
eat

isa

sizehuman

milk
grass

big

cow

oxygen mammals

isa

apple

Relation: eat(human, cow)
depth=1

Figure 3 – The relation “eat(human, cow)” and its context

This method enables Clouds to understand each relation in terms of what usually
characterizes its context, opening the way for applying deduction and abduction.
The result of this algorithm has the form of Prolog expressions, as in the example shown
in fig. 4

isa(lion, mammals).
eat(lion, cow).

generalization

eat(human,X):-eat(X, grass),
isa(X, mammals).

eat(Y,X):-isa(Y, mammals),
eat(X, grass),
isa(X, mammals).

Figure 4 – Generalization of the first argument of eat/2 based on observations “isa(lion, mammals”
and “eat(lion, cow)”

We refer the reader to [5] to know more about this algorithm.

References

1. Novak, J.D. and Gowin, D.B.; Learning How To Learn. New York, Camb. University Press.

1984.
2. Inspiraton. Software Developed by Inspiration Software Inc. http://www.inspiration.com
3. Decision Explorer. Developed by Banxia Software. http://www.banxia.com/demain.html
4. Pereira, F. C. Construção Interactiva de Mapas Conceptuais, M.Sc. Dissertation, University of

Coimbra, Portugal, 2000
5. S. Muggleton and C. Feng (1990) Efficient Induction of Logic Programs. In Proceedings of the

First Conference on Algorithmic Learning Theory, Tokyo, Ohmsa Publishers. Reprinted by
Ohmsa Springer Verlag.

