
12 http://www.oracleprofessionalnewsletter.comOracle Professional January 2001

New Subqueries in Oracle8i
Pedro Bizarro

In this article, Pedro Bizarro describes the new subqueries
that are allowed in Oracle8i. These new subqueries can
be used in places that haven’t been allowed before, such
as in a SELECT clause, in an expression, or as a function/
procedure parameter.

THERE’S been much discussion recently about the
many new features of Oracle8i. However, I haven’t
read anything about the new subqueries. In fact, I

didn’t even know there were any new subqueries until a
friend, who was asking for some SQL advice, wrote a SQL
statement. With my pre-Oracle8i perspective, I saw a
mistake in the code regarding subqueries. I was very
surprised to see that the statement worked fine! And my
friend was surprised by my surprise.

After that, I decided to do some research on this new
kind of subquery. In short, what I found out is that you
can use a subquery anywhere just as long as it returns
only one value. In addition to this new kind of subquery,
Oracle8i still supports all other previous ones.

Subquery within a SELECT clause
In versions prior to Oracle8i, you had to use views or
subqueries within FROM clauses if you wanted
something with employee information and group
information like this:

ENAME SAL AVG_SAL_DEPT
---------- ------------ ------------
ADAMS 1100 2175
ALLEN 1600 1567
BLAKE 2850 1567
CLARK 2450 2917
...
WARD 1250 1567
14 rows selected.

Here’s the SELECT statement to produce such
a result:

/* Solution in a database prior to Oracle8i: */
/* - Subquery within FROM. */
/* - Join made in outer WHERE clause. */
/* - Subquery must be named with an alias. */
/* - Subquery may return more than one row. */
SELECT e.ename,
 e.sal,
 avg_sal_dept
 FROM emp e,
 (SELECT deptno, round(avg(sal)) avg_sal_dept
 FROM emp
 GROUP BY deptno) dept_avg
 WHERE e.deptno = dept_avg.deptno
 ORDER BY ename;

Note that the subquery within FROM has to be
given a name—dept_avg, in this example—in order to
be referenced in the WHERE clause defining the join.
Although it’s not necessary, I also renamed
round(avg(sal)) to avg_sal_dept.

With Oracle8i, there are two extra solutions:
analytic functions (which I’m not going to talk about
because everybody else is) and subqueries within a
SELECT clause:

/* Solution in an Oracle8i database: */
/* - Subquery within SELECT. */
/* - Join made with correlation. */
/* - Subquery doesn't need a name. */
/* - Subquery must return exactly one value. */
SELECT e.ename,
 e.sal,
 (SELECT round(avg(sal))
 FROM emp
 WHERE deptno = e.deptno) avg_sal_dept
 FROM emp e
 ORDER BY ename;

Note that since I’m using a group function and
correlation, I’m certain that the subquery will return
exactly one value. I’m wittingly saying “one value”
and not “one row” because this kind of subquery
has to return just one column and one row—thus,
one value.

Error messages
If the subquery returns more than one column, Oracle
replies with “ORA-00913: too many values.” If the
subquery returns more than one row, Oracle complains
with “ORA-01427: single-row subquery returns more
than one row.”

If the Oracle8i solution is used in a previous version,
Oracle responds with “ORA-00936: missing expression”
at the beginning of the subquery.

Subquery within an expression
Since you can use subqueries anywhere, you can use
them on expressions as well. Before Oracle8i, you couldn’t
write the following UPDATE statement:

/* UPDATE in an Oracle8i database: */
UPDATE emp e
 SET sal = 1.1 * (SELECT avg(sal)
 FROM emp
 WHERE deptno = e.deptno)
 WHERE some_condition;

Oracle
Professional

Continues on page 18

18 http://www.oracleprofessionalnewsletter.comOracle Professional January 2001

 CURSOR cur_next_id IS
 SELECT my_table_sequence.NEXTVAL FROM Dual;
BEGIN
 OPEN cur_next_id;
 FETCH cur_next_id INTO :my_table.record_id;
 CLOSE cur_next_id;
END;

Remember, PRE-INSERT is a form trigger, not a
database trigger. If you add records using something
other than forms, you’ll have to have similar code. ▲

Steve Miller has written for Pinnacle Publishing for many years, and has

12 years of software development experience. He recently became a

member of Wycliffe Bible Translators, and anticipates starting his

assignment soon. sdmiller@tir.com.

Instead, you had to place the multiplication inside the
subquery, like this:

/* UPDATE in a database prior to Oracle8i: */
UPDATE emp e
 SET sal = (SELECT 1.1 * avg(sal)
 FROM emp
 WHERE deptno = e.deptno)
 WHERE some_condition;

Although the new code is a bit cleaner, this isn’t a
fantastic achievement. Let’s take a look at something
different. For instance, I can multiply, divide, add, or
subtract the returns of two SELECTs! Consider this
statement (which is very unlikely to be needed, but
it’s possible):

/* For every employee, set his/her salary to */
/* be 110% of the average between the average */
/* of all salaries and the average of employees */
/* from his/her department. */
/* Executes only in Oracle8i. */
UPDATE emp e
 SET sal = 1.1 * ((SELECT avg(sal) -- average of
 FROM emp) -- all emps
 +
 (SELECT avg(sal) -- average of
 FROM emp -- dept
 WHERE deptno = e.deptno))/2;

For each record, the first subquery returns the
average salary of all employees (group by is the whole
set), and the second returns the average salary of all
employees from that employee’s department (implicit
group by deptno because of correlation). I then add the
results and then divide by two to get the average of
them both. Then I multiply by 1.1 to get a 10 percent
raise on that average. Try to do that on a database
prior to Oracle8i, and you’ll end up with some very
confusing code.

Error messages
Strangely enough, if I remove the “1.1 *” factor from the
statement, Oracle can’t parse it anymore. It seems that the
expression can’t start with a subquery if I have more than
one. Removing the “1.1 *” factor yields a parsing error
message like “ORA-00907: missing right parenthesis” or
“ORA-00933: SQL command not properly ended.” So,
what if I don’t want to calculate the 110 percent of the
average? I can do a workaround using “1.0 *,” which
doesn’t change the result.

Subquery as a parameter
Another way to use subqueries is as a function or
procedure parameter. In Oracle8i, it’s possible to write
a SQL statement like this:

SELECT to_char((SELECT max(hiredate)
 FROM emp),
 'yyyy-mm-dd') FROM dual;

A user-defined function or procedure can also have a
subquery as any of its parameters. The only detail to keep
in mind is that you must add surrounding parentheses to
the subquery.

Conclusion
This new kind of subquery can be used anywhere,
as long as the following conditions are met:

• It returns only one value (one column and
one row).

• It’s surrounded by parentheses.
• In expressions with more than one subquery,

the expression doesn’t start with a subquery. ▲

Pedro Bizarro is a graduate student at University Nova de Lisboa and a

teaching assistant in all database courses at University of Coimbra,

Portugal. He’ll be completing work for his master’s degree soon. Pedro

is already a Fulbright grantee for his Ph.D. program, starting September

2001. bizarro@dei.uc.pt.

New Subqueries...
Continued from page 12

Additional Information
For more information, see the following article from Metalink:

GSX Problem—Solution No: 1015345.6.

