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Abstract. The standard Genetic Algorithm has several 
limitations when dealing with dynamic environments. 
The most harmful limitation as to do with the tendency 
for the large majority of the members of a population to 
convergence prematurely to a particular region of the 
search space, making thus difficult for the GA to find 
other solutions when changes in the environment occur. 
Several approaches have been tested to overcome this 
limitation by introducing diversity in the population or 
through the incorporation of memory in order to help 
the algorithm when situations of the past can be 
observed in future situations. In this paper, we propose 
a GA inspired in the immune system ideas in order to 
deal with dynamic environments. This algorithm 
combines the two aspects mentioned above: diversity 
and memory and we will show that our algorithm is 
also more adaptable and accurate than the other 
algorithms proposed in the literature. 

1 Introduction 
When using evolutionary techniques in order to cope 
with dynamic environments it is necessary to overcome 
some limitations inherent to traditional evolutionary 
algorithms. In fact, the long-term success of any 
biologic evolutionary system is assured by maintaining 
diversity of individuals within a population. Genetic 
diversity allows a population to adapt to modifications 
in the environment. In the classical GA it is difficult to 
maintain diversity because the algorithm assigns 
exponentially increasing number of trials to the 
observed best parts of the search space [9]. 
Consequently, the GA has strong convergence 
properties. When dealing with dynamic environments 
strong convergence can be problematic, because the 
GA is unable to respond effectively to modifications in 
the environment. To avoid premature convergence of 
all individuals of the population towards the optimum, 
several approaches have been used: hypermutation [1], 
Random Immigrants [10], new genetic operators [15]. 
Other approaches tested with non-stationary 
environments used the incorporation of memory 
mechanisms in the GA in order to help it, when some 
situation saw in the past is observed again [2], [3], [11]. 
In this work we propose a new algorithm, inspired in 
some ideas present in the natural immune system (IS), 
and we will test its performance in a classical dynamic 
optimization problem. The proposed GA will be 
referred as ISGA (Immune System-Based Genetic 
Algorithm). The application of ideas of the immune 
system in dynamic environments is not completely new 
and other approaches can be found in [6] and [7]. 

The IS exist to protect us from the dysfunction of our 
own cells and against the action of exogenous 
infectious microorganisms. The IS has two important 
characteristics. First, it is able to respond to infinity 
many pathogens by its capability to build also infinity 
many diverse agents adapted to kill each type of 
pathogen. The mechanism used combine gene libraries 
with a process of clonal selection, which includes a 
phase of somatic hypermutation.  Second, the IS is able 
to build up a memory of previous pathogens and how to 
fight them, so the next time they invade the body the 
response will be faster and stronger. 
In our work we will incorporate these two main ideas 
of the IS in a standard GA. We tested the ISGA with a 
biologically inspired genetic operator called 
transformation already used with success in problems 
dealing with dynamic environments [17], against a 
standard GA enhanced with memory (MGA) using 
one-point, two-point or uniform crossover. We will see 
that transformation is able to promote high levels of 
diversity and consequently the results were better than 
the ones obtained with crossover. The results also show 
that the proposed ISGA has a typical behavior of 
primary and secondary response: as the time goes on, 
the reaction to the changes becomes faster and stronger.   
We also compared ISGA with other three approaches: 
the GA used only with transformation (ETGA) [16], 
the Hypermutation GA (HMGA) proposed by Cobb [1] 
and the Random Immigrants GA (RIGA) proposed by 
Grefenstette [10]. 
 

2 The Immune system 
The IS is a complex, distributed and multi-layered 
system, which includes cells, molecules and organs that 
constitute an identification mechanism capable of 
recognize and eliminate foreign molecules called 
antigens.  
The human body maintains a large number of immune 
cells. Some belong to the innate IS, e.g. the 
macrophages, while others are part of the acquired, or 
adaptive IS and are called lymphocytes. There are 
mainly two types of lymphocytes, the B-cells and the 
T-cells, which cooperate but play different roles in the 
immune response. The B-cells can be further 
decomposed into plasma B-cells and memory B-cells. 
The same happens with the T-cells, which can be 
partitioned into helper T-cells and killer T-cells. The 
main functions of the B-cells are the production and 
secretion of antibodies as a response to exogenous 
organisms. Each B-cell produces a specific antibody, 
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which can recognize and bind to a specific pathogen.  
In order to do their job correctly the B-cells replicates 
by a process called clonal selection. This process is 
similar to the evolution of a population by means of a 
genetic algorithm using only mutation: only those cells 
that have high affinity with an antigen proliferate. 
Therefore, the B cells that have antibodies, which bind 
to the pathogen, are selected and cloned. Nevertheless, 
during cloning some variations may occur due to a 
process of somatic hypermutation. This may increase 
the affinity between the antibody and the antigen, 
making the B-cell more adapted to bind to the antigen.  
When an antigen enters an organism for the first time, 
only a few number of B-cells can recognize it. Those 
cells are then stimulated to produce antibodies specific 
to the antigen (primary response).  But, the IS can 
remember patterns that have been seen previously. This 
is possible because some cells, including the B-cells, 
become memory cells, which persist in the circulation 
and are capable of recognizing enemies when and if 
they attack again. Therefore, the next time the same 
pathogen invades the organism, the response of the IS 
will be much faster and strong (secondary response). 
We may say then the IS has learning capabilities based 
on the memory cells. 
If each antibody recognizes only a specific antigen, 
how is possible that a huge number of pathogen can be 
recognized by the IS? The answer to this question 
remains in the diversity of the antibodies. A heavy and 
a light chain form each antibody molecule, and a 
variable and a constant region create each one of these 
chains. These variable and constant regions of the light 
chain are created by the concatenation of modular 
chunks of genes aggregated in gene libraries called V, 
J and C regions (see Fig. 1). The heavy chain is formed 
by an analogous process [4].  
 
 
 
 
 
 
Fig. 1. Concatenation of genetic chunks to create an antibody 

molecule 
 
It will be those ideas of gene libraries, clonal selection 
(including somatic hypermutation) and memory B-cells 
that we will translate and include into the standard GA. 
They are responsible for promoting diversity and 
ascribing memory capabilities to our modified GA. 
 

3 Computational Implementation 
As we said, in this work it is not our intention to mimic 
the functioning of the IS. We only used some of the 
main characteristics of the IS in order to enhance the 
GA so it will be more efficient when dealing with 
dynamic environments. In the next sections we will 
describe the mapping between those aspects of the IS 
we will use and the modified GA. 

3.1 The immune system genetic algorithm 

Our starting point is to view the environment as an 
antigen, and the changes in the environment as the 
appearance of a different antigen. We will have a 
process that detects whenever a change occurs. In 
practice, this will be achieved when degradation in the 
average fitness of the population is observed.  The 
detecting mechanism is equivalent to the role of the 
helper T-cells.  
But let’s see how the GA behaves when the 
environment is stationary. First of all in the ISGA there 
are two populations.  The first one is a set of 
individuals (the antibodies of plasma B-cells) that 
evolve in a process similar to clonal selection: the 
individuals that have the best match to the optimum 
(antigen) are selected and cloned. During the cloning 
phase every individual has a chance of being modified 
by a mechanism that remembers the somatic 
hypermutation of B-cells. This mechanism is based in a 
biologically inspired event called transformation and 
will be explained later. The second population is 
formed by a collection of individuals, which were the 
best ones at different moments in the past when they 
belong to the first population (they are the antibodies of 
memory B-cells). Each individual of the second 
population has attached a value which corresponds to 
the average of the first population’s fitness is some 
particular situation, when that individual had good 
performance. 
When a change occurs and is detected, it probably 
exists in the domain of the memory B-cells one that has 
proximity with the new conditions. This proximity is 
measured by the average of plasma B-cells 
population’s fitness and the value attached to the 
memory B-cells. The most suitable memory B-cell is 
then activated, cloned and reintroduced in the 
population of plasma B-cells, replacing the worst ones. 
As we see the two populations communicate with each 
other. 
At the beginning of the simulation, we randomly create 
a set of M libraries, each one containing N gene 
segments of size L. The libraries are kept constant 
during the entire evolutionary process (Fig 2).   
 

 

 

 

 

Fig. 2. Organization of the gene segments in libraries 

These gene libraries will be used for the creation of the 
first memory B-cells and in the process of somatic 
hypermutation. In our experiments we used three 
libraries with eight segments of size four each and one 
library with eight segments of size five. The 
concatenation of one element of each library creates a 
binary string of size 17 (the length of our B-cells).  The 
number and size of these gene libraries is problem 
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dependent. This idea of gene libraries was also used by 
[12]. 

3.2 Transformation 

Somatic hypermutation is implemented by a 
biologically inspired mechanism called transformation. 
Biological transformation consists in the transfer of 
small pieces of extra cellular DNA between organisms. 
These strains of DNA, or gene segments, are extracted 
from the environment and added to recipient cells [14].  
The process of using transformation can be described 
as follows: the ISGA starts with an initial population of 
individuals (plasma B-cells) and an initial pool of gene 
libraries both created at random. In each generation we 
select individuals to be transformed and we modify 
them using one gene segment of one gene library 
chosen at random. To transform each individual we 
now choose, also randomly, a point in the selected 
individual. The gene segment is incorporated in the 
genome of the individual, replacing the genes after the 
transformation point, previously selected. Form more 
details see [15]. 

4 Experimental Setup 
In order to test de adequacy of ISGA to dynamic 
environments we made two types of experiments. In 
the first one, we compared ISGA with the standard GA 
enhanced by the memory B-cells (MGA), to see if 
transformation is a more effective, diversity preserving 
mechanism; in the second one, we compared ISGA also 
with three other algorithms: the Triggered 
Hypermutation GA (HMGA), the Random Immigrants 
GA (RIGA) and the enhanced transformation GA 
(ETGA) proposed by [1], [10] and [15], respectively. 
Now the goal was to see if the double effect of 
diversity and memory could give better results. In all 
cases we used the dynamic version of the 0/1 Knapsack 
Problem (DKP). 

4.1 The 0/1 dynamic knapsack problem 

The well-known single-objective 0/1 knapsack problem 
is defined as follows: given a set of n items, each with a 
weight W[i] and a profit P[i], with i = 1, ..., n, the goal 
is to determine which items to include in the knapsack 
so that the total weight is less than some given limit (C) 
and the total profit is as large as possible. In the 
classical 0/1 knapsack problem, the capacity of the bag 
is kept constant during the entire run. In the dynamic 
knapsack problem (DKP) the weight limit can change 
over time between different values. 
We used as a test function a 17-object 0/1 knapsack 
problem with oscillating weight constraint, proposed by 
[8]. The vectors of values and weights used for the 
knapsack problem are exactly the same as that used by 
the authors. The penalty function for the infeasible 
solutions is defined by: Pen=K(∆W)2, where ∆W is the 
amount which the solution exceeds the weight 
constraint and K=20. A solution is considered 
infeasible if the sum of the weights of the items 
exceeds the knapsack capacity.  

Goldberg and Smith used the DKP to compare the 
performance of a haploid GA and a diploid GA with 
fixed dominance map and a diploid GA with a triallelic 
dominance map. In [10] it is referred that their 
experimentation used variation of the knapsack 
capacity between two different values every 15 
generations. This problem was already used by other 
authors to test evolutionary approaches in dynamic 
environments [11], [13]. 
In this work we enlarged the number of case studies: 
we used three types of changes in the capacity of the 
knapsack: periodic changes between two values 
(C1=104 and C2=60) and between three values 
(C1=60, C2=104 and C3=80) and non-periodic changes 
between 3 different capacities (C1=60, C2=80 and 
C3=104). Each trial allowed 10 cycles with cycle 
lengths of 30, 100, 200 and 300 generations.  
When the changes in the environment are non-periodic 
we run the algorithms during 2000 generations and 
selected randomly several moments of change. In these 
moments the capacity of the knapsack was altered to a 
different value chosen among the same three values 
used in the periodic situation:  60, 80 and 104. 

4.2 The parameters of the algorithms 

The set of parameters used by the different algorithms 
were the following. 
The three standard GA enhanced with memory (MGA) 
used 70% of crossover rate and 0.1% of mutation rate.  
The ISGA used only transformation with a probability 
of 90%. Moreover the gene segment length is equal to 
4 or 5, depending on the selected gene library. A 
detailed explanation of the reason for these values is 
given in [16].  
The HMGA uses a baseline mutation rate (usually very 
low) when the algorithm is stable and increases the 
mutation rate (to a high value) whenever there is 
degradation in the performance of the time-averaged 
best performance [1]. We implemented this mechanism 
with a baseline mutation rate of 0.1% and whenever 
degradation is observed we increased the mutation rate 
to 10%, 20% or 30%. The best results were achieved by 
a hypermutation rate of 10% (the results presented refer 
to this value). 
The RIGA replaces a fraction of a standard GA’s 
population each generation, as determined by the 
replacement rate, with randomly generated values. This 
mechanism views the GA’s population as always 
having a small flux of immigrants that wander in and 
out of the population from one generation to the next. 
This strategy effectively concentrates mutation in a 
subpopulation while maintaining a traditionally low 
(i.e., 0.001) mutation rate in the remainder of the 
population [10]. We tested the Random Immigrants GA 
with a replacement rate of 10%, 20% and 30%. The 
best results were achieved with the value 10% (the 
results presented refer to this value) Both HMGA and 
RIGA were run with one-point crossover with a 
probability of 70%. 
The ETGA was run with the set of parameters obtained 
by the empirical study presented in [16]. The chosen 



values were: no mutation rate, transformation rate equal 
to 90%, replacement rate of 50% and gene segment 
length of size 5. 
All the algorithms used populations with 100 
individuals and were repeated 30 times. In the ISGA 
and MGA we used an additional population of 20 
memory B-cells. The results reported in the next 
section are the average values of the 30 runs. 

4.3. Performance Measures 

In order to evaluate the performance of the five 
approaches (seven algorithms) solving the dynamic 0/1 
KP, we used two well known measures, usually 
employed in non-stationary problems. Those measures 
are the accuracy and the adaptability. They are based 
on a measure proposed by De Jong [5], the off-line 
performance, but evaluate the difference between the 
value of the current best individual and the optimum 
value, instead of evaluating just the value of the best 
individual. Accuracy (Acc) is the difference between 
the value of the current best individual in the 
population of “just before change” generation and the 
optimum value averaged over the entire cycle. 
Accuracy measures the capacity to recover to the new 
optimum before a new modification occurs. 
Adaptability (Ada) is the difference between the value 
of the current best individual of each generation and the 
optimum value averaged over the entire cycle. 
Adaptability measures the speed of the recovery.  
The smaller measured values for accuracy and 
adaptability the better results. If the accuracy reaches a 
zero value it means that the algorithm found the 
optimum every time before a change occurs. If 
adaptability is equal to zero it means that the best 
individual in the population was at the optimum for all 
generations, i.e., the optimum was never lost by the 
algorithm. 
These two measures can be mathematically defined by: 
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Where K is the number of changes during the run; r is 
the number of generations between two consecutive 
changes; Erri,j is the difference between the value of 
the current best individual in the population of jth 
generation after the last change (j ∈[0, r-1]) and the 
optimum value for the fitness after the ith change (i ∈[0, 
K-1]). 

5 Results 
In this section, due to the constraints of space, we will 
present part of the obtained results. First we compare 
the ISGA with the MGA with one point crossover 
(MGA-Cx1). After that, we present the performance 
measures obtained with the proposed approach (ISGA), 
MGA and the other approaches already used by us 
(ETGA) and by other authors (HMGA and RIGA). 

5.1 Transformation versus Crossover: the problem 
of diversity 

As described in the paper, the proposed approach based 
on IS ideas incorporated a sort of memory mechanism 
in the GA in order to improve its efficiency when 
dealing with dynamic environments. Nevertheless, this 
mechanism of memory was not completely successful 
if we cannot preserve the diversity in the population. In 
fact, the MGA with one point crossover couldn’t reach 
the best solution when changes occur.  On the other 
hand ISGA, as the time passes, is always improving 
until reach the best solution. This behavior that can be 
seen in Figure 3 corresponds to the primary response 
and secondary response of the IS. Figures 3 and 4 show 
the behavior of the two algorithms when changes occur 
between to values every 15 generations.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. ISGA: changes between 2 values, cycle=30 
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 4. MGA-Cx1: changes between 2 values cycle=30 
 
For larger cycles, with changes every 150 generations, 
ISGA after the first change is able to recognize all the 
changes in the environment and the adaptation is very 
rapid. MGA-Cx1 had a poor performance because it 
memorizes one of the values but can’t improve it until 
reach the best solution.  
The behavior of ISGA and MGA-Cx1 when changes 
occur between three different values in periodic 
intervals is very similar to the previous cases. ISGA 
performs much better than MGA-Cx1. Figures 5 and 6 
show the obtained results for cycles of 30 generations. 
For non-periodic changes between three different 
values, the results were not as good as the ones 
obtained in the case of periodic changes. Nevertheless, 
ISGA was also better than MGA-Cx1. In this case, 
MGA-Cx1 had some situations where it was not able to 
find the new solution when a change occurred. Figures 
7 and 8 show the achieved solutions. 
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Fig. 5. ISGA: changes between 3 values, cycle=30 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. MGA-Cx1: changes between 3 values, cycle=30 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. ISGA: changes between 3 values, non-periodic 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. MGA-Cx1: changes between 3 values, non-periodic 
 

The main reason for the worst performance of MGA-
Cx1 seems to be the fact that the population’s diversity 
is loss and the memory mechanism by itself isn’t 
enough to readapt the solutions to the new conditions 
of the environment. We used a standard measure of 

diversity defined by (3) and we can see that 
transformation can preserve diversity at very high.  
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where L is the length of the chromosome, P, the 
population size, pi, the ith individual in the population 
and HD the hamming distance. 
Figure 9 shows the values measured for ISGA and 
MGA-Cx1 in the case of periodic changes between two 
values every 15 generations. As we can see, the MGA-
Cx1 with mutation a rate equal to 0.1% cannot preserve 
the diverity in the population..  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Diversity in the population preserved by ISGA-T and 

MGA-Cx1 

5.2 Immune system GA: comparing with other 
approaches 

To evaluate the ISGA more deeply, we test it against 
other algorithms. We re-implemented the well-known 
HMGA and RIGA. We also used the GA with 
transformation, but no memory, enhanced by the 
appropriated choice for the parameters as studied in 
[16] (ETGA). To compare the results obtained by the 
proposed approach (ISGA) and also MGA (mutation 
rate of 0.1%), with these well known algorithms we 
used the measures introduced in section 4.4. Table 1 
shows the accuracy and adaptability values measured 
during all the generations. As we can see, the ISGA 
was the approach that obtained, in general, the best 
results for periodic or non-periodic changes, with 
smaller or larger cycle lengths. 
Moreover, in order to see how the accuracy and 
adaptability were in the end of the generational process 
(to see the effect of primary and secondary response) 
we present in table 2 the values obtained in the last 
cycle of each experiment. As we can see, ISGA 
reached always a zero value. This means that the new 
optimum was always achieved after the change occurs. 
MGA-Cx in some situations also achieved similar 
values. 
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Table 1. Accuracy and Adaptability obtained with ETGA, HMGA, RIGA, ISGA and MGA during the entire generational 
process 

    ETGA HM 10% RI 10% ISGA MGA-Cx1 MGA-Cx2 MGA-CxU 

Acc 2.20 1.25 1.78 0.58 2.22 4.20 3.68 Cycle = 30 
Ada 5.01 3.26 4.37 0.78 2.73 4.24 3.70 

Acc 0.29 0.23 0.59 0.06 4.14 3.64 3.94 Cycle = 100 
Ada 2.35 0.98 2.58 0.16 4.24 3.83 4.08 

Acc 0.05 0.23 0.50 0.06 0.49 3.64 4.14 Cycle = 200 
Ada 1.11 0.61 1.68 0.17 1.16 3.70 4.14 

Acc 0.02 0.23 0.45 0.04 3.28 0.79 0.14 

Periodic 2 
values 

Cycle = 300 
Ada 0.73 0.52 1.27 0.15 3.43 1.05 0.21 

Acc 1.45 0.70 1.08 0.38 0.72 1.28 2.16 Cycle = 30 
Ada 3.53 1.84 2.74 0.68 2.02 1.85 3.59 

Acc 0.18 0.36 0.22 0.09 0.57 6.68 1.10 Cycle = 100 
Ada 1.30 2.18 1.16 0.31 1.25 7.52 4.22 

Acc 0.02 0.42 0.15 0.04 3.64 1.48 0.28 Cycle = 200 
Ada 0.61 1.39 0.65 0.19 4.59 4.45 1.59 

Acc 0.01 0.49 0.22 0.05 0.58 1.34 0.16 

Periodic 3 
values 

Cycle = 300 
Ada 0.42 1.35 0.58 0.18 1.79 3.38 1.04 

Acc 0.77 0.54 0.93 0.53 1.27 1.27 0.98 NonPeriodic 
3 values - 

Ada 2.02 1.13 2.22 2.29 5.71 5.26 4.03 
 
 

Table 2. Accuracy and Adaptability obtained with ETGA, HMGA, RIGA, ISGA and MGA in the last cycle 

    ETGA HM 10% RI 10% ISGA MGA-Cx1 MGA-Cx2 MGA-CxU 

Acc 1.90 0.73 0.47 0.00 3.00 4.00 4.00 Cycle = 30 
Ada 4.01 2.25 0.76 0.00 3.00 4.00 4.00 

Acc 0.97 0.20 0.83 0.00 4.00 4.00 4.00 Cycle = 100 
Ada 3.40 0.72 2.18 0.00 4.00 4.00 4.00 

Acc 0.23 0.20 0.73 0.00 0.13 4.00 4.00 Cycle = 200 
Ada 1.29 0.69 1.77 0.00 0.13 4.00 4.00 

Acc 0.10 0.40 0.50 0.00 0.00 0.27 0.00 

Periodic 2 
values 

Cycle = 300 
Ada 0.81 0.62 1.14 0.00 0.00 0.27 0.00 

Acc 1.73 0.60 1.93 0.00 0.30 0.00 0.00 Cycle = 30 
Ada 5.72 2.40 5.61 0.00 4.24 1.63 4.73 

Acc 0.07 0.20 0.47 0.00 0.00 5.00 3.00 Cycle = 100 
Ada 1.78 0.61 2.32 0.00 0.84 6.64 4.16 

Acc 0.00 0.30 0.10 0.00 4.00 0.00 0.00 Cycle = 200 
Ada 1.03 0.54 1.00 0.00 4.50 0.98 0.57 

Acc 0.00 0.20 0.40 0.00 0.00 0.00 0.00 

Periodic 3 
values 

Cycle = 300 
Ada 0.44 0.38 0.98 0.00 1.40 0.96 0.85 

Acc 0.60 0.10 0.70 0.00 0.00 0.00 0.00 NonPeriodic 
3 values - 

Ada 2.03 0.46 2.12 0.00 0.00 0.00 0.00 
 
 
 
 
 
 

 
 
 
 
 



6 Conclusions 
In this paper we proposed an immune system-based GA 
to deal with dynamic environment. We tested it in 
different situations, namely periodic and non-periodic 
changes and different cycle lengths. The main 
characteristic of this ISGA is the ability to remember 
past situations with faster and stronger reactions 
obtained as time goes on, e.g. a kind of secondary 
response typical of the natural immune system. 
Moreover, using transformation, as a hypermutation 
operator, ISGA is able to keep the diversity in the 
population.  
On the overall, when we compare ISGA with the other 
algorithms (MGA, ETGA, RIGA and HMGA), it 
always achieved the best accuracy and adaptability 
values.  
As the results are very promising, the next step in our 
work is to make ISGA more close to the natural IS (for 
instance, we want to start with a plasma B-cells 
population created using also the gene libraries), and to 
test it in other problems involving dynamic 
environments. 
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