
An Immune System-Based Genetic Algorithm to Deal with Dynamic
Environments: Diversity and Memory

Anabela Simões1,2, Ernesto Costa2
1 Dept. of Informatics and Systems Engineering, Coimbra Polytechnic, Quinta da Nora, 3030 Coimbra,

Portugal
2 Centre for Informatics and Systems of the Univ. of Coimbra, Pinhal de Marrocos, 3030 Coimbra, Portugal

E-mail: abs@isec.pt; ernesto@dei.uc.pt

Abstract. The standard Genetic Algorithm has several
limitations when dealing with dynamic environments.
The most harmful limitation as to do with the tendency
for the large majority of the members of a population to
convergence prematurely to a particular region of the
search space, making thus difficult for the GA to find
other solutions when changes in the environment occur.
Several approaches have been tested to overcome this
limitation by introducing diversity in the population or
through the incorporation of memory in order to help
the algorithm when situations of the past can be
observed in future situations. In this paper, we propose
a GA inspired in the immune system ideas in order to
deal with dynamic environments. This algorithm
combines the two aspects mentioned above: diversity
and memory and we will show that our algorithm is
also more adaptable and accurate than the other
algorithms proposed in the literature.

1 Introduction
When using evolutionary techniques in order to cope
with dynamic environments it is necessary to overcome
some limitations inherent to traditional evolutionary
algorithms. In fact, the long-term success of any
biologic evolutionary system is assured by maintaining
diversity of individuals within a population. Genetic
diversity allows a population to adapt to modifications
in the environment. In the classical GA it is difficult to
maintain diversity because the algorithm assigns
exponentially increasing number of trials to the
observed best parts of the search space [9].
Consequently, the GA has strong convergence
properties. When dealing with dynamic environments
strong convergence can be problematic, because the
GA is unable to respond effectively to modifications in
the environment. To avoid premature convergence of
all individuals of the population towards the optimum,
several approaches have been used: hypermutation [1],
Random Immigrants [10], new genetic operators [15].
Other approaches tested with non-stationary
environments used the incorporation of memory
mechanisms in the GA in order to help it, when some
situation saw in the past is observed again [2], [3], [11].
In this work we propose a new algorithm, inspired in
some ideas present in the natural immune system (IS),
and we will test its performance in a classical dynamic
optimization problem. The proposed GA will be
referred as ISGA (Immune System-Based Genetic
Algorithm). The application of ideas of the immune
system in dynamic environments is not completely new
and other approaches can be found in [6] and [7].

The IS exist to protect us from the dysfunction of our
own cells and against the action of exogenous
infectious microorganisms. The IS has two important
characteristics. First, it is able to respond to infinity
many pathogens by its capability to build also infinity
many diverse agents adapted to kill each type of
pathogen. The mechanism used combine gene libraries
with a process of clonal selection, which includes a
phase of somatic hypermutation. Second, the IS is able
to build up a memory of previous pathogens and how to
fight them, so the next time they invade the body the
response will be faster and stronger.
In our work we will incorporate these two main ideas
of the IS in a standard GA. We tested the ISGA with a
biologically inspired genetic operator called
transformation already used with success in problems
dealing with dynamic environments [17], against a
standard GA enhanced with memory (MGA) using
one-point, two-point or uniform crossover. We will see
that transformation is able to promote high levels of
diversity and consequently the results were better than
the ones obtained with crossover. The results also show
that the proposed ISGA has a typical behavior of
primary and secondary response: as the time goes on,
the reaction to the changes becomes faster and stronger.
We also compared ISGA with other three approaches:
the GA used only with transformation (ETGA) [16],
the Hypermutation GA (HMGA) proposed by Cobb [1]
and the Random Immigrants GA (RIGA) proposed by
Grefenstette [10].

2 The Immune system
The IS is a complex, distributed and multi-layered
system, which includes cells, molecules and organs that
constitute an identification mechanism capable of
recognize and eliminate foreign molecules called
antigens.
The human body maintains a large number of immune
cells. Some belong to the innate IS, e.g. the
macrophages, while others are part of the acquired, or
adaptive IS and are called lymphocytes. There are
mainly two types of lymphocytes, the B-cells and the
T-cells, which cooperate but play different roles in the
immune response. The B-cells can be further
decomposed into plasma B-cells and memory B-cells.
The same happens with the T-cells, which can be
partitioned into helper T-cells and killer T-cells. The
main functions of the B-cells are the production and
secretion of antibodies as a response to exogenous
organisms. Each B-cell produces a specific antibody,

In David W. Pearson, Nigel C. Steele, Rudolf Albrecht (eds.), Proceedings of the
Sixth International Conference on Neural Networks and Genetic Algorithms
(ICANNGA'03), pp. 168-174, Roanne, France, 23-25 April, Springer, 2003.

which can recognize and bind to a specific pathogen.
In order to do their job correctly the B-cells replicates
by a process called clonal selection. This process is
similar to the evolution of a population by means of a
genetic algorithm using only mutation: only those cells
that have high affinity with an antigen proliferate.
Therefore, the B cells that have antibodies, which bind
to the pathogen, are selected and cloned. Nevertheless,
during cloning some variations may occur due to a
process of somatic hypermutation. This may increase
the affinity between the antibody and the antigen,
making the B-cell more adapted to bind to the antigen.
When an antigen enters an organism for the first time,
only a few number of B-cells can recognize it. Those
cells are then stimulated to produce antibodies specific
to the antigen (primary response). But, the IS can
remember patterns that have been seen previously. This
is possible because some cells, including the B-cells,
become memory cells, which persist in the circulation
and are capable of recognizing enemies when and if
they attack again. Therefore, the next time the same
pathogen invades the organism, the response of the IS
will be much faster and strong (secondary response).
We may say then the IS has learning capabilities based
on the memory cells.
If each antibody recognizes only a specific antigen,
how is possible that a huge number of pathogen can be
recognized by the IS? The answer to this question
remains in the diversity of the antibodies. A heavy and
a light chain form each antibody molecule, and a
variable and a constant region create each one of these
chains. These variable and constant regions of the light
chain are created by the concatenation of modular
chunks of genes aggregated in gene libraries called V,
J and C regions (see Fig. 1). The heavy chain is formed
by an analogous process [4].

Fig. 1. Concatenation of genetic chunks to create an antibody

molecule

It will be those ideas of gene libraries, clonal selection
(including somatic hypermutation) and memory B-cells
that we will translate and include into the standard GA.
They are responsible for promoting diversity and
ascribing memory capabilities to our modified GA.

3 Computational Implementation
As we said, in this work it is not our intention to mimic
the functioning of the IS. We only used some of the
main characteristics of the IS in order to enhance the
GA so it will be more efficient when dealing with
dynamic environments. In the next sections we will
describe the mapping between those aspects of the IS
we will use and the modified GA.

3.1 The immune system genetic algorithm

Our starting point is to view the environment as an
antigen, and the changes in the environment as the
appearance of a different antigen. We will have a
process that detects whenever a change occurs. In
practice, this will be achieved when degradation in the
average fitness of the population is observed. The
detecting mechanism is equivalent to the role of the
helper T-cells.
But let’s see how the GA behaves when the
environment is stationary. First of all in the ISGA there
are two populations. The first one is a set of
individuals (the antibodies of plasma B-cells) that
evolve in a process similar to clonal selection: the
individuals that have the best match to the optimum
(antigen) are selected and cloned. During the cloning
phase every individual has a chance of being modified
by a mechanism that remembers the somatic
hypermutation of B-cells. This mechanism is based in a
biologically inspired event called transformation and
will be explained later. The second population is
formed by a collection of individuals, which were the
best ones at different moments in the past when they
belong to the first population (they are the antibodies of
memory B-cells). Each individual of the second
population has attached a value which corresponds to
the average of the first population’s fitness is some
particular situation, when that individual had good
performance.
When a change occurs and is detected, it probably
exists in the domain of the memory B-cells one that has
proximity with the new conditions. This proximity is
measured by the average of plasma B-cells
population’s fitness and the value attached to the
memory B-cells. The most suitable memory B-cell is
then activated, cloned and reintroduced in the
population of plasma B-cells, replacing the worst ones.
As we see the two populations communicate with each
other.
At the beginning of the simulation, we randomly create
a set of M libraries, each one containing N gene
segments of size L. The libraries are kept constant
during the entire evolutionary process (Fig 2).

Fig. 2. Organization of the gene segments in libraries

These gene libraries will be used for the creation of the
first memory B-cells and in the process of somatic
hypermutation. In our experiments we used three
libraries with eight segments of size four each and one
library with eight segments of size five. The
concatenation of one element of each library creates a
binary string of size 17 (the length of our B-cells). The
number and size of these gene libraries is problem

...

...
Segment 1

... ...

Segment 2

Segment N

...

Library 1 Library 2 Library M ...

V1 V2 V3 Vn J1 J2 J3 J4 J5 C

V2 J5 C

dependent. This idea of gene libraries was also used by
[12].

3.2 Transformation

Somatic hypermutation is implemented by a
biologically inspired mechanism called transformation.
Biological transformation consists in the transfer of
small pieces of extra cellular DNA between organisms.
These strains of DNA, or gene segments, are extracted
from the environment and added to recipient cells [14].
The process of using transformation can be described
as follows: the ISGA starts with an initial population of
individuals (plasma B-cells) and an initial pool of gene
libraries both created at random. In each generation we
select individuals to be transformed and we modify
them using one gene segment of one gene library
chosen at random. To transform each individual we
now choose, also randomly, a point in the selected
individual. The gene segment is incorporated in the
genome of the individual, replacing the genes after the
transformation point, previously selected. Form more
details see [15].

4 Experimental Setup
In order to test de adequacy of ISGA to dynamic
environments we made two types of experiments. In
the first one, we compared ISGA with the standard GA
enhanced by the memory B-cells (MGA), to see if
transformation is a more effective, diversity preserving
mechanism; in the second one, we compared ISGA also
with three other algorithms: the Triggered
Hypermutation GA (HMGA), the Random Immigrants
GA (RIGA) and the enhanced transformation GA
(ETGA) proposed by [1], [10] and [15], respectively.
Now the goal was to see if the double effect of
diversity and memory could give better results. In all
cases we used the dynamic version of the 0/1 Knapsack
Problem (DKP).

4.1 The 0/1 dynamic knapsack problem

The well-known single-objective 0/1 knapsack problem
is defined as follows: given a set of n items, each with a
weight W[i] and a profit P[i], with i = 1, ..., n, the goal
is to determine which items to include in the knapsack
so that the total weight is less than some given limit (C)
and the total profit is as large as possible. In the
classical 0/1 knapsack problem, the capacity of the bag
is kept constant during the entire run. In the dynamic
knapsack problem (DKP) the weight limit can change
over time between different values.
We used as a test function a 17-object 0/1 knapsack
problem with oscillating weight constraint, proposed by
[8]. The vectors of values and weights used for the
knapsack problem are exactly the same as that used by
the authors. The penalty function for the infeasible
solutions is defined by: Pen=K(∆W)2, where ∆W is the
amount which the solution exceeds the weight
constraint and K=20. A solution is considered
infeasible if the sum of the weights of the items
exceeds the knapsack capacity.

Goldberg and Smith used the DKP to compare the
performance of a haploid GA and a diploid GA with
fixed dominance map and a diploid GA with a triallelic
dominance map. In [10] it is referred that their
experimentation used variation of the knapsack
capacity between two different values every 15
generations. This problem was already used by other
authors to test evolutionary approaches in dynamic
environments [11], [13].
In this work we enlarged the number of case studies:
we used three types of changes in the capacity of the
knapsack: periodic changes between two values
(C1=104 and C2=60) and between three values
(C1=60, C2=104 and C3=80) and non-periodic changes
between 3 different capacities (C1=60, C2=80 and
C3=104). Each trial allowed 10 cycles with cycle
lengths of 30, 100, 200 and 300 generations.
When the changes in the environment are non-periodic
we run the algorithms during 2000 generations and
selected randomly several moments of change. In these
moments the capacity of the knapsack was altered to a
different value chosen among the same three values
used in the periodic situation: 60, 80 and 104.

4.2 The parameters of the algorithms

The set of parameters used by the different algorithms
were the following.
The three standard GA enhanced with memory (MGA)
used 70% of crossover rate and 0.1% of mutation rate.
The ISGA used only transformation with a probability
of 90%. Moreover the gene segment length is equal to
4 or 5, depending on the selected gene library. A
detailed explanation of the reason for these values is
given in [16].
The HMGA uses a baseline mutation rate (usually very
low) when the algorithm is stable and increases the
mutation rate (to a high value) whenever there is
degradation in the performance of the time-averaged
best performance [1]. We implemented this mechanism
with a baseline mutation rate of 0.1% and whenever
degradation is observed we increased the mutation rate
to 10%, 20% or 30%. The best results were achieved by
a hypermutation rate of 10% (the results presented refer
to this value).
The RIGA replaces a fraction of a standard GA’s
population each generation, as determined by the
replacement rate, with randomly generated values. This
mechanism views the GA’s population as always
having a small flux of immigrants that wander in and
out of the population from one generation to the next.
This strategy effectively concentrates mutation in a
subpopulation while maintaining a traditionally low
(i.e., 0.001) mutation rate in the remainder of the
population [10]. We tested the Random Immigrants GA
with a replacement rate of 10%, 20% and 30%. The
best results were achieved with the value 10% (the
results presented refer to this value) Both HMGA and
RIGA were run with one-point crossover with a
probability of 70%.
The ETGA was run with the set of parameters obtained
by the empirical study presented in [16]. The chosen

values were: no mutation rate, transformation rate equal
to 90%, replacement rate of 50% and gene segment
length of size 5.
All the algorithms used populations with 100
individuals and were repeated 30 times. In the ISGA
and MGA we used an additional population of 20
memory B-cells. The results reported in the next
section are the average values of the 30 runs.

4.3. Performance Measures

In order to evaluate the performance of the five
approaches (seven algorithms) solving the dynamic 0/1
KP, we used two well known measures, usually
employed in non-stationary problems. Those measures
are the accuracy and the adaptability. They are based
on a measure proposed by De Jong [5], the off-line
performance, but evaluate the difference between the
value of the current best individual and the optimum
value, instead of evaluating just the value of the best
individual. Accuracy (Acc) is the difference between
the value of the current best individual in the
population of “just before change” generation and the
optimum value averaged over the entire cycle.
Accuracy measures the capacity to recover to the new
optimum before a new modification occurs.
Adaptability (Ada) is the difference between the value
of the current best individual of each generation and the
optimum value averaged over the entire cycle.
Adaptability measures the speed of the recovery.
The smaller measured values for accuracy and
adaptability the better results. If the accuracy reaches a
zero value it means that the algorithm found the
optimum every time before a change occurs. If
adaptability is equal to zero it means that the best
individual in the population was at the optimum for all
generations, i.e., the optimum was never lost by the
algorithm.
These two measures can be mathematically defined by:

∑
=

−=
K

i
niErr

K
Acc

1
1,

1 (1)

∑ ∑
=

−

=
⎥
⎦

⎤
⎢
⎣

⎡
=

K

i

r

j
jiErr

rK
Ada

1

1

0
,

11 (2)

Where K is the number of changes during the run; r is
the number of generations between two consecutive
changes; Erri,j is the difference between the value of
the current best individual in the population of jth
generation after the last change (j ∈[0, r-1]) and the
optimum value for the fitness after the ith change (i ∈[0,
K-1]).

5 Results
In this section, due to the constraints of space, we will
present part of the obtained results. First we compare
the ISGA with the MGA with one point crossover
(MGA-Cx1). After that, we present the performance
measures obtained with the proposed approach (ISGA),
MGA and the other approaches already used by us
(ETGA) and by other authors (HMGA and RIGA).

5.1 Transformation versus Crossover: the problem
of diversity

As described in the paper, the proposed approach based
on IS ideas incorporated a sort of memory mechanism
in the GA in order to improve its efficiency when
dealing with dynamic environments. Nevertheless, this
mechanism of memory was not completely successful
if we cannot preserve the diversity in the population. In
fact, the MGA with one point crossover couldn’t reach
the best solution when changes occur. On the other
hand ISGA, as the time passes, is always improving
until reach the best solution. This behavior that can be
seen in Figure 3 corresponds to the primary response
and secondary response of the IS. Figures 3 and 4 show
the behavior of the two algorithms when changes occur
between to values every 15 generations.

Fig. 3. ISGA: changes between 2 values, cycle=30

Fig. 4. MGA-Cx1: changes between 2 values cycle=30

For larger cycles, with changes every 150 generations,
ISGA after the first change is able to recognize all the
changes in the environment and the adaptation is very
rapid. MGA-Cx1 had a poor performance because it
memorizes one of the values but can’t improve it until
reach the best solution.
The behavior of ISGA and MGA-Cx1 when changes
occur between three different values in periodic
intervals is very similar to the previous cases. ISGA
performs much better than MGA-Cx1. Figures 5 and 6
show the obtained results for cycles of 30 generations.
For non-periodic changes between three different
values, the results were not as good as the ones
obtained in the case of periodic changes. Nevertheless,
ISGA was also better than MGA-Cx1. In this case,
MGA-Cx1 had some situations where it was not able to
find the new solution when a change occurred. Figures
7 and 8 show the achieved solutions.

50

55

60

65

70

75

80

85

90

1 27 53 79 105 131 157 183 209 235 261 287
Generat io ns

ISGA
Optimum

F
i
t
n
e
s
s

50

55

60

65

70

75

80

85

90

1 27 53 79 105 131 157 183 209 235 261 287
Generat io ns

M GA-Cx1
Optimum

F
i
t
n
e
s
s

50

55

60

65

70

75

80

85

90

1 213 425 637 849 1061 1273 1485 1697 1909
Generat io ns

ISGA
Optimum

F
i
t
n
e
s
s

Fig. 5. ISGA: changes between 3 values, cycle=30

Fig. 6. MGA-Cx1: changes between 3 values, cycle=30

Fig. 7. ISGA: changes between 3 values, non-periodic

Fig. 8. MGA-Cx1: changes between 3 values, non-periodic

The main reason for the worst performance of MGA-
Cx1 seems to be the fact that the population’s diversity
is loss and the memory mechanism by itself isn’t
enough to readapt the solutions to the new conditions
of the environment. We used a standard measure of

diversity defined by (3) and we can see that
transformation can preserve diversity at very high.

∑∑
= =−

=
P

i

P

j
ji ppHD

PLP
PopDiv

1 1
),(

)1(
1)((3)

where L is the length of the chromosome, P, the
population size, pi, the ith individual in the population
and HD the hamming distance.
Figure 9 shows the values measured for ISGA and
MGA-Cx1 in the case of periodic changes between two
values every 15 generations. As we can see, the MGA-
Cx1 with mutation a rate equal to 0.1% cannot preserve
the diverity in the population..

Fig. 9. Diversity in the population preserved by ISGA-T and

MGA-Cx1

5.2 Immune system GA: comparing with other
approaches

To evaluate the ISGA more deeply, we test it against
other algorithms. We re-implemented the well-known
HMGA and RIGA. We also used the GA with
transformation, but no memory, enhanced by the
appropriated choice for the parameters as studied in
[16] (ETGA). To compare the results obtained by the
proposed approach (ISGA) and also MGA (mutation
rate of 0.1%), with these well known algorithms we
used the measures introduced in section 4.4. Table 1
shows the accuracy and adaptability values measured
during all the generations. As we can see, the ISGA
was the approach that obtained, in general, the best
results for periodic or non-periodic changes, with
smaller or larger cycle lengths.
Moreover, in order to see how the accuracy and
adaptability were in the end of the generational process
(to see the effect of primary and secondary response)
we present in table 2 the values obtained in the last
cycle of each experiment. As we can see, ISGA
reached always a zero value. This means that the new
optimum was always achieved after the change occurs.
MGA-Cx in some situations also achieved similar
values.

50

55

60

65

70

75

80

85

90

1 26 51 76 101 126 151 176 201 226 251 276
Generat io ns

M GA-Cx1
Optimum

F
i
t
n
e
s
s

50

55

60

65

70

75

80

85

90

1 26 51 76 101 126 151 176 201 226 251 276
Generatio ns

ISGA
Optimum

F
i
t
n
e
s
s

50

55

60

65

70

75

80

85

90

1 213 425 637 849 1061 1273 1485 1697 1909
Generat io ns

M GA-Cx1
Optimum

F
i
t
n
e
s
s

0

0.05
0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

0.5

1 28 55 82 109 136 163 190 217 244 271 298

Generat io ns

ISGA-T
MGA-Cx1

D
i
v
e
r
s
i
t
y

Table 1. Accuracy and Adaptability obtained with ETGA, HMGA, RIGA, ISGA and MGA during the entire generational
process

 ETGA HM 10% RI 10% ISGA MGA-Cx1 MGA-Cx2 MGA-CxU

Acc 2.20 1.25 1.78 0.58 2.22 4.20 3.68 Cycle = 30
Ada 5.01 3.26 4.37 0.78 2.73 4.24 3.70

Acc 0.29 0.23 0.59 0.06 4.14 3.64 3.94 Cycle = 100
Ada 2.35 0.98 2.58 0.16 4.24 3.83 4.08

Acc 0.05 0.23 0.50 0.06 0.49 3.64 4.14 Cycle = 200
Ada 1.11 0.61 1.68 0.17 1.16 3.70 4.14

Acc 0.02 0.23 0.45 0.04 3.28 0.79 0.14

Periodic 2
values

Cycle = 300
Ada 0.73 0.52 1.27 0.15 3.43 1.05 0.21

Acc 1.45 0.70 1.08 0.38 0.72 1.28 2.16 Cycle = 30
Ada 3.53 1.84 2.74 0.68 2.02 1.85 3.59

Acc 0.18 0.36 0.22 0.09 0.57 6.68 1.10 Cycle = 100
Ada 1.30 2.18 1.16 0.31 1.25 7.52 4.22

Acc 0.02 0.42 0.15 0.04 3.64 1.48 0.28 Cycle = 200
Ada 0.61 1.39 0.65 0.19 4.59 4.45 1.59

Acc 0.01 0.49 0.22 0.05 0.58 1.34 0.16

Periodic 3
values

Cycle = 300
Ada 0.42 1.35 0.58 0.18 1.79 3.38 1.04

Acc 0.77 0.54 0.93 0.53 1.27 1.27 0.98 NonPeriodic
3 values -

Ada 2.02 1.13 2.22 2.29 5.71 5.26 4.03

Table 2. Accuracy and Adaptability obtained with ETGA, HMGA, RIGA, ISGA and MGA in the last cycle

 ETGA HM 10% RI 10% ISGA MGA-Cx1 MGA-Cx2 MGA-CxU

Acc 1.90 0.73 0.47 0.00 3.00 4.00 4.00 Cycle = 30
Ada 4.01 2.25 0.76 0.00 3.00 4.00 4.00

Acc 0.97 0.20 0.83 0.00 4.00 4.00 4.00 Cycle = 100
Ada 3.40 0.72 2.18 0.00 4.00 4.00 4.00

Acc 0.23 0.20 0.73 0.00 0.13 4.00 4.00 Cycle = 200
Ada 1.29 0.69 1.77 0.00 0.13 4.00 4.00

Acc 0.10 0.40 0.50 0.00 0.00 0.27 0.00

Periodic 2
values

Cycle = 300
Ada 0.81 0.62 1.14 0.00 0.00 0.27 0.00

Acc 1.73 0.60 1.93 0.00 0.30 0.00 0.00 Cycle = 30
Ada 5.72 2.40 5.61 0.00 4.24 1.63 4.73

Acc 0.07 0.20 0.47 0.00 0.00 5.00 3.00 Cycle = 100
Ada 1.78 0.61 2.32 0.00 0.84 6.64 4.16

Acc 0.00 0.30 0.10 0.00 4.00 0.00 0.00 Cycle = 200
Ada 1.03 0.54 1.00 0.00 4.50 0.98 0.57

Acc 0.00 0.20 0.40 0.00 0.00 0.00 0.00

Periodic 3
values

Cycle = 300
Ada 0.44 0.38 0.98 0.00 1.40 0.96 0.85

Acc 0.60 0.10 0.70 0.00 0.00 0.00 0.00 NonPeriodic
3 values -

Ada 2.03 0.46 2.12 0.00 0.00 0.00 0.00

6 Conclusions
In this paper we proposed an immune system-based GA
to deal with dynamic environment. We tested it in
different situations, namely periodic and non-periodic
changes and different cycle lengths. The main
characteristic of this ISGA is the ability to remember
past situations with faster and stronger reactions
obtained as time goes on, e.g. a kind of secondary
response typical of the natural immune system.
Moreover, using transformation, as a hypermutation
operator, ISGA is able to keep the diversity in the
population.
On the overall, when we compare ISGA with the other
algorithms (MGA, ETGA, RIGA and HMGA), it
always achieved the best accuracy and adaptability
values.
As the results are very promising, the next step in our
work is to make ISGA more close to the natural IS (for
instance, we want to start with a plasma B-cells
population created using also the gene libraries), and to
test it in other problems involving dynamic
environments.

References
1. H. Cobb (1990). An Investigation into the Use of

Hypermutation as an Adaptive Operator in Genetic
Algorithms Having Continuous, Time-Dependent
Nonstationary Environments. Technical Report AIC-90-
001.

2. J. Branke (1999). Memory Enhanced Evolutionary
Algorithm for Changing Optimization Problems. In
Proceedings of the 1999 Congress on Evolutionary
Computation, pp. 1875-1881, IEEE.

3. J. Branke (2002). Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, 2002.

4. D. P. Clark, L. D. Clark (1997). Molecular Biology made
simple and fun. Cache River Press.

5. K. A. De Jong (1975). Analysis of the Behavior of a
Class of Genetic Adaptive Systems. Ph.D. Dissertation,
Department of Computer and Communication Science,
University of Michigan.

6. A. Gaspar, P. Collard (1999). From GAs to Artificial
Immune Systems: Improving Adaptation in Time
Dependent Optimization. Proc. of the 1999 Congress on
Evolutionary Computation, pp. 1859-1866, IEEE.

7. A. Gaspar, P. Collard (2000). Immune approaches to
experience acquisition in time dependent optimization. In
A. S. Wu (ed.), GECCO’2000 Workshop Proceedings.

8. D. E. Goldberg, R. E. Smith (1987). Nonstationary
Function Optimization using Genetic Algorithms with
Dominance and Diploidy. In J. J. Grefenstette (ed.),
Proceedings of the 2nd International Conference on
Genetic Algorithms, pp. 59-68. Laurence Erlbaum
Associates.

9. D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Publishing Company, Inc.

10. J. J. Grefenstette (1992). Genetic Algorithms for
Changing Environments. In R. Maenner, B. Manderick
(eds.), Parallel. Problem Solving from Nature 2, pp. 137-
144. North Holland.

11. A. Hadad, C. Eick (1997). Supporting Poliploidy in
Genetic Algorithms using Dominance Vectors. In P.
Angeline et al. (eds.) Proc. of the 6th International Conf.
on Ev. Programming, vol. 1213 of LNCS. Springer.

12. R. R. Hightower, S. Forrest, A. S. Perelson (1995). The
Evolution of Emergent Organization in Immune System
Gene Libraries. In Proc. of the 6th Int. Conf. on Genetic
Algorithms, pp. 344-350, Morgan Kaufmann.

13. K. P. Ng, K. C. Wong (1995). A New Diploid Scheme and
Dominance Change Mechanism for Non-stationary
Function Optimization. In Proc. of the 6th Int. Conf. on
Genetic Algorithms, pp. 159-166. Morgan Kaufmann.

14. P. J. Russell (1998). Genetics. 5th edition, Addison-
Wesley.

15. A. Simões, E. Costa (2001). On Biologically Inspired
Genetic Operators: Transformation in the Standard
Genetic Algorithm. In Lee Spector et. Al (eds),
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2001), pp. 584-591,
Morgan Kaufmann.

16. A. Simões, E. Costa (2003a). Improving the Genetic
Algorithm’s Performance when Using Transformation.
Proceedings of ICANNGA 2003.

17. A. Simões, E. Costa (2003b). A Comparative Study Using
GAs to Deal with Dynamic Environments. Proceedings of
ICANNGA 2003.

