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Abstract 

 
 

In this paper, we introduce a biologically 
inspired recombination operator that occurs in 
the colonies of bacteria. The mechanism is called 
transformation and is responsible for the genetic 
variation and consequently the advantageous 
characteristics that some bacteria possess. We 
present an implementation of the transformation 
mechanism in the standard GA (SGA) and we 
compare its performance solving two different 
classes of problems using either transformation 
or the traditional crossover operators. The results 
show that the GA using transformation is always 
superior to the SGA. The good results obtained 
by transformation seem to be related to the great 
degree of diversity that the mechanism 
introduces in population. 

1 INTRODUCTION 

For a population to survive changes in its environment it 
must have sufficient genetic variety to adapt to the new 
conditions: less genetically diverse populations may be at 
greater risk. Known as genetic diversity, this great 
variation within species is what allows populations to 
adapt to changes in climate and other local environmental 
conditions.  

Genetic Algorithms (GAs) are inspired by genetics and 
natural selection: a population evolves through a number 
of generations, where the fittest individuals are more 
likely to be selected to reproduce in each generation. This 
process allows the evolution of the population to the best 
solution (Holland, 1992; Goldberg, 1989). The 
population’s diversity is introduced by the application of 
two main genetic operators: mutation and crossover. 
These operators produce changes in the individuals, 
creating evolutionary advantages in some of them.  

Nature maintains genetic diversity by several mechanisms 
besides crossover and mutation. Some of those 

mechanisms are: inversion, transduction, transformation, 
conjugation, transposition and translocation (Gould and 
Keeton, 1996). 

Some researchers in the field of Evolutionary 
Computation (EC) highlighted the importance of studying 
different biologically inspired genetic operators. (Mitchell 
and Forrest, 1994) and (Banzhaf et al., 1998) stress that it 
would be important to analyze if some of the mechanisms 
of rearranging genetic material present in the biological 
systems, when implemented and used in the Evolutionary 
Algorithms (EA), improve their performance. 

Several authors have already used some biologically 
inspired mechanisms besides crossover and mutation in 
EA. For instance, inversion (Holland, 1992), conjugation 
(Harvey, 1996), translocation (De Falco et al., 2000), 
transduction (Nawa et al., 1999) and transposition 
(Simões and Costa, 1999; 2001a) were already used as the 
main genetic operators in the EA. As far as we know none 
implementation of the transformation mechanism was 
tested in EA. 

Bacteria sometimes take up and incorporate fragments of 
DNA from the environment. This is called transformation 
(Clark and Russell, 1997).  

In this paper, we propose a computational implementation 
of the transformation mechanism and we study the GA 
performance solving two different problems. The 
empirical analysis will focus the application of the 
traditional crossover operators and transformation, for 
different population’s size. The two classes of problems 
used to study the GA performance were function 
optimization (Rastrigin, Griewangk, Schwefel and Ackley 
test functions) and a combinatorial optimization problem 
(0/1 knapsack problem). 

This paper is organized in the following manner. First, in 
section 2, we describe the biological functioning of the 
transformation mechanism and we introduce our 
computational implementation for the proposed 
recombination mechanism. Section 3, details the 
characteristics of the experimental environment, including 
the selected problems to test the GA performance and the 
GA parameters. In section 4, we make an exhaustive 
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comparison of the results obtained with the proposed 
recombination operator and with the standard crossover 
operators (1-point, 2-point and uniform crossover). 
Finally, we present the relevant conclusions of the work. 

2 TRANSFORMATION 

In our work, we will propose a modified GA with the 
introduction of a new biologically inspired operator, 
called transformation. Next sections will describe this 
mechanism. 

2.1 BIOLOGICAL TRANSFORMATION 

Some bacteria readily take up outside DNA. If they have 
this ability, they are said to be competent. Competent 
bacteria can absorb fragments of DNA proceeding from 
dead bacteria and present in their environment.  

Usually, transformation consists in the transfer of small 
pieces of extra cellular DNA between organisms. These 
strains of DNA, or gene segments, are extracted from the 
environment and added to recipient cells (Russell, 1998).  

After that, there are two possibilities, failure or success, 
known technically as restriction and recombination. 
Restriction is the destruction of the incoming foreign 
DNA, since those bacteria assume that foreign DNA is 
more likely to come from an enemy, such as a virus. In 
this case, transformation fails. Recombination is the 
physical incorporation of some of the incoming DNA into 
the bacterial chromosome. If this happens, genes from the 
assimilated segment replace some of the host cell’s 
genetic information and bacteria are permanently 
transformed.  Once integrated in the chromosome, the 
DNA segment is able to survive. 

2.2 COMPUTATIONAL TRANSFORMATION 

The DNA fragments to incorporate in the individuals of 
the population are generated at the beginning of the 
process. This DNA fragments consist in binary strings of 
different lengths and will form the gene segment pool. 

We will use the transformation mechanism as the main 
genetic operator in the GA.  Therefore, transformation is 
applied every generation instead of the standard crossover 
operator. First, we select the individuals to be transformed 
using the roulette-wheel selection method and these 
individuals are changed with a fixed probability. Part of 
the gene segment pool is changed every generation, using 
genetic information of the individuals of the population.  

This modified GA will be referred as Transformation-
based GA (TGA) and is described in Figure 1.  

The main aspects to consider in the implementation of 
transformation are the origin of the gene segments that 
will transform each individual and how the process of 
transformation will occur. These aspects will be detailed 
in the next sections. 

 

 

 

 

 

 

 

 

Figure 1: The GA Modified with Transformation 

2.2.1 The Basic Functioning of the Transformation 
Mechanism 

The GA starts with an initial population of individuals 
and an initial pool of gene segments, both created at 
random. In each generation, we select individuals to be 
transformed and we modify them using the gene segments 
in the segment pool. After that, the segment pool is 
changed, using the old population to create part of the 
new segments with the remaining being created at random 
(see Figure 2). 

 

 

 

 

 

 

 
 

 

 

Figure 2: Computational Transformation 

 

2.2.2 Origin of the Gene Segments 

The segments that each individual will take up from the 
"surrounding environment" will proceed, mostly, from the 
individuals existing in the previous generation. In the 
used experimental setup, we changed the segment pool 
every generation. The modifications were made replacing 
70% of the segments with new ones, created from the 
individuals of the old population. The remaining 30% 
were created at random.  The size of the gene segments is 
also chosen in a random manner.   

1. Generate Initial Population 
    Generate Initial Gene Segment Pool 
2. DO 
    2.1. Evaluate Population 
    2.2. Select Individuals 
    2.3. Transform Individuals 
    2.4. Replace Population with New Individuals 
    2.5. Create New Gene Segment Pool 
WHILE (NOT Stop_Condition) 
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2.2.3 Transforming the Genetic Information of an 
Individual 

After selecting individuals to a mating pool, we use the 
transformation mechanism to produce new individuals. In 
this case, there is no sexual reproduction among the 
individuals of the population. Each individual will 
generate a new one through the process of transformation. 
We can consider this process a form of asexual 
reproduction.  Each individual will be transformed using a 
transformation probability.  

The proposed mechanism can be described as follows: we 
select a segment from the segment pool and we randomly 
choose a point of transformation in the selected 
individual. The segment is incorporated in the genome of 
the individual, replacing the genes after the 
transformation point, previously selected. Obviously, the 
chromosome is seen as a circle. Proceeding this way the 
chromosome length is kept constant. This corresponds to 
the biological process where the gene segments, when 
integrated in the recipient's cell DNA, replace some genes 
in its chromosome. Figure 3 illustrates the process of 
transforming an individual. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Transforming an Individual 

 

3 EXPERIMENTAL SETTINGS  
In order to investigate the performance of the TGA, we 
selected two different classes of problems: a 
combinatorial optimization problem (the 0/1 Knapsack 
problem (KP)) and the function optimization domain. 

We selected these problems, since that, they are well 
known benchmarks to EA (Goldberg, 1989). 

3.1 THE 0/1 KNAPSACK PROBLEM 

The knapsack problem is a NP-complete problem, where 
we have to find the feasible combination of objects so that 
the total value of the objects put in the knapsack is 
maximized, subject to a capacity or weight constraint. 

Formally, let C be the weight limitation (maximum 
permissible weight of the knapsack), let the integers 
1,2,…,n denote n available types of objects, p

i
 and w

i
, the 

value (or profit) and the weight of the ith object, 
respectively. A solution for the problem is represented by 
the binary vector xx of length n. Each element of xx can be 
zero or one: if x

i
=1 then the item i was selected for the 

knapsack.   

The knapsack problem can be expressed as  

 

 

i.e., maximizing the profits, subject to the weight 
constraint 

 

 

 

where x
i 
 is the selected object. 

3.1.1 The Implemented Knapsack 

We used several knapsack types (with 50, 100, 250 and 
500 items). The evaluation of the solutions used a penalty 
function; the weights and profits vectors were created 
without any correlation and we used average capacity for 
the knapsack, as suggested in (Michalewicz, 1999). 

The fitness f(x) for each binary string is determined as: 

 

 

with Pen(x) the penalty function. 

The penalty function is zero to all feasible solutions 
(those that don’t exceed the knapsack capacity) and 
greater than zero otherwise. There are many possibilities 
for assigning the penalty value to the infeasible solutions. 
In our case, we considered a logarithmic penalty function 
defined by expression (4). 

      

 

 

with ρ = max
i=1..n

{pi/wi} 

The generation of the vectors of profits (P[i]) and weights 
(W[i]) was made using the uncorrelated method,  i.e.,  

    W[i]=(uniformly) random ([1..v]) 

     P[i]=(uniformly) random ([1..v]) 

The value used for the parameter v was 10. 

The capacity of the knapsack (average capacity) was 
calculated by: 
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3.2 TEST FUNCTIONS 

We also evaluate the transformation mechanism by 
comparing its performance with the performance of the 
SGA (using three standard crossover operators) on several 
function optimization problems. To assess the quality of 
the algorithms we used the minimum function value 
found after a fixed number of function evaluations 
(50000, 100000 and 200000 in this case). The selected 
functions selected to analyze the GA performance were 
Rastrigin, Schwefel, Griewangk, and Ackley functions. All 
those functions are highly multimodal and have been used 
in other experimental comparisons of EA (Potter and De 
Jong, 1994; Gordon and Whitley, 1993).  

The Rastrigin function is defined as: 

∑
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where n=20, A=10 and –5.12 ≤ xi ≤ 5.12. The main 
characteristic of this function is the existence of many 
sub-optimal peaks whose values increase as the distance 
of the global optimum point increases  

The Schwefel function is defined as: 
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where n=10, V=418.9829 and –500 ≤ xi ≤ 500. The global 
minimum of the function is zero. The interesting aspect of 
this function is the existence of a second-best minimum 
far away from the global minimum, which can trap the 
optimization algorithms on a local optimum.  

The Griewangk function is defined as: 
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where n=10 and –600 ≤ xi ≤ 600. This function has a 
product term, which introduces interdependency among 
the variables.  

The Ackley function is defined as: 
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where n=30 and –30 ≤ xi ≤ 30. At a low dimension the 
landscape of this function is unimodal, however, the 
second exponential term covers the landscape with many 
small peaks and valleys. 

3.3 THE PARAMETERS OF THE GENETIC 
ALGORITHM 

The GA was first implemented with crossover (1-point. 2-
point and uniform) and then with transformation. In the 

first problem, the 0/1 knapsack, we executed experiments 
to study the effect of the population size in the GA 
efficiency. Therefore, the population size varied between 
20, 50, 100 and 200 individuals. In this problem, the GA 
evolved through 1000 generations. 

For the function optimization domain, we fixed the 
maximum number of function evaluations equal to 
200000.  

In both classes of problems, we used binary 
representation to encode the problem, the roulette wheel 
selection and an elite size of two individuals. The 
mutation and crossover/transformation rate were 0.1% 
and 70%, respectively. The results reported in the next 
sections are the average computed over twenty-five runs. 

3.4 EVALUATION MEASURE 

We used the De Jong's off-line measure to compare GA 
efficiency when applied crossover or transformation (De 
Jong 1975). This measure is defined by: 

 

 

 
where f e

 * = best {fe(1), fe(2), ..., fe(n)} and T is the 
number of runs. This means that off-line measure is the 
average of the best individuals in each generation. Due to 
the 25 trials, the average of the 25 runs was evaluated. 

4 EXPERIMENTAL RESULTS 
Next sections show the averaged results obtained in the 
knapsack problem and in the selected test functions. 

4.1  RESULTS OBTAINED IN THE KNAPSACK 
PROBLEM 

The proposed mechanism allowed the GA to achieve 
better solutions than the SGA using one-point, two-point 
or uniform crossover. This observation can be generalized 
to all the tested instances of the KP, i.e., with 50, 100, 250 
and 500 items. Table 1 summarizes all the results for the 
0/1 KP using the SGA and the TGA with different 
population’s sizes. The best solutions found for n=50, 
100, 250 and 500 are marked in bold. 

As we can see, the population size is an important 
parameter when using crossover. In fact, increasing the 
population size from 50 to 100 or 200 individuals, 
crossover's performance shows some improvements. 
Using transformation with smaller populations, the GA 
obtained better results than the SGA with larger 
populations. As we can see in the table, with only 20 
individuals in the population the TGA achieves solutions 
superior to the ones achieved by the SGA with 200 
individuals. 
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Table 1: Summary of the Obtained Results using the SGA and the TGA with Different Population's Size 

 
  Genetic Operator 

  One-point Crossover Two-point Crossover Uniform Crossover Transformation 

 P. Size→ 50 100 200 50 100 200 50 100 200 20 50 100 200 

50 227,77 236,48 244,17 245,82 253,91 263,10 265,00 271,58 273,56 278,63 284,55 287,51 300,76 

100 358.71 454.66 466.24 439.65 491.63 514.46 490.97 511.70 520.96 528.21 551.28 576.93 590.40 

250 950.08 1074.39 1089.54 923.92 1120.51 1036.18 1037.94 1211.10 1173.67 1330.68 1361.94 1375.79 1410.28 

N
º 

of
 I

te
m

s 

500 1734.66 1985.96 1959.66 1845.88 1972.49 1996.18 2001.11 2303.35 2183.51 2548.29 2630.82 2633.53 2656.17 

 

 

In order to understand these results, it is important to see 
how the GA evolved through the 1000 generations. In 
Figure 4, we show a representative example for the KP 
with 100 items.  The figure compares the GA 
performance using uniform crossover with 200 
individuals and transformation with a population of 50 
binary strings. 
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Figure 4: Comparing the SGA (200 inds.) and the TGA 
(50 inds.) Performances 

 

As Figure 4 shows, uniform crossover only allow the 
SGA to improve in the first generations and after that the 
evolution stops. The TGA evolved during a long period, 
and was able to reach better results than crossover, even 
with a smaller population. 

To analyze the influence of the population size in the 
GA's performance when using transformation we show, in 
Figure 5, the results obtained for the KP with 100 items. 
To the other instances, the results are quite similar. We 
can see that when using larger populations the maximum 
result obtained is superior. 

Comparing the execution times spent by the four genetic 
operators solving the KP, we can see that transformation 
is the mechanism that consumes more time. Nevertheless, 

the differences are relatively small compared with the 
crossover operators. The time spent by the TGA is 
approximately 7% superior to the time spent by the 
operator that obtains the worst results (one-point 
crossover) and 3% superior to the best crossover operator 
(uniform crossover). 
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Figure 5: The TGA's Performance using Different 
Population's Size 

 

Table 2 reports the results (in seconds) obtained running 
25 trials of the SGA and the TGA with a population of 
200 individuals, in a Pentium II with a 300 MHz 
processor. 

Table 2: Time Spent to Solve the 0/1 Knapsack Problem 

Nº items Cx1 Cx2 CxU TGA 

50 2726 3276 3302 3702 

100 6642 6757 6807 7095 

250 15736 15842 16005 16656 

500 30870 31761 32356 33382 

 

Pop=20 

 Pop=50 

  Pop=100 

     Pop=200 



 

Table 3: Function Optimization: Summary of the Results (minimization) 

    Genetic Operator 

    One-point Crossover Two-point Crossover Uniform Crossover Transformation 

 Nº evals 50000 100000 200000 50000 100000 200000 50000 100000 200000 50000 100000 200000 

Rastrigin 88.170 88.170 88.170 67.639 67.639 67.639 63.739 63.739 63.739 73.272 52.518 36.682 
Griewangk 0.323 0.323 0.323 0.259 0.259 0.259 0.244 0.244 0.244 0.074 0.026 0.010 
Schwefel 665.406 665.406 665.406 557.770 557.770 557.770 456.273 456.273 456.273 220.878 62.404 8.695 

F
un

ct
io

n 

Ackley 16.248 16.248 16.248 15.102 15.102 15.102 14.181 14.181 14.181 11.617 8.645 5.941 

 

4.2 RESULTS OBTAINED IN THE FUNCTION 
OPTIMIZATION DOMAIN 

The TGA obtained, in the entire set of test functions, the 
best solutions after 200000 function evaluations.  Table 3 
reports the achieved results. The results presented are 
those obtained after 50000, 100000 and 200000 function 
evaluations using the SGA and the TGA. The best 
solutions are marked in bold. 

In this case, the GA using the transformation mechanism 
evolves very slowly to the achieved result. On the other 
hand, the SGA converges very rapidly to the obtained 
value, but is unable to continue evolving. Besides, just 
like in the KP, in the function optimization domain, TGA 
obtained better results than SGA with fewer number of 
function evaluations. 

The graphical representation shown in Figure 6 illustrates 
the SGA and TGA performances minimizing the Ackley 
function, but we observed a similar behavior in all the test 
functions. Once the population converges to a certain 
value, SGA is incapable of continue exploring other zones 
of the search space. The TGA evolves slower, but can 
continue improving during the 2000 generations.  
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Figure 6: SGA and TGA evolution in 200000 function 
evaluations 

 

Once again, these results appear to be a consequence of 
the loss of diversity in the population when using the 

crossover operators. TGA evolves during the entire 
simulation because the genetic variation of the individuals 
is kept in high levels. In the next section, we will focus 
the population's diversity measured in both problem 
domains. 

Concerning the computational times, once again, TGA 
was the slower algorithm, but the differences to the times 
used by the crossover operators are quite small.  TGA was 
approximately 7% slower than one-point crossover (the 
operator which obtained the worst results) and 4% slower 
than uniform crossover (which obtained the best 
performance among the crossover operators). Table 4 
shows the times (in seconds) spent in the execution of the 
25 trials for the minimization of the test functions. 

Table 4: Time Spent to Minimize the Test Functions 

Function Cx1 Cx2 CxU TGA 
Rastrigin 7039 7059 7298 7698 

Griewangk 5338 5360 5478 5686 
Schwefel 4683 4722 4832 4989 
Ackley 11320 11588 11667 12152 

 
 

4.3 POPULATION'S DIVERSITY 

The main reason for the good results obtained by the TGA 
seems to be the great diversity that the proposed 
mechanism introduces in the population. This can be the 
explanation for the fact of the TGA with 20 individuals 
outperforms the SGA with 200. To compare the diversity 
in the population we used a standard measure, which is 
the sum of the Hamming distances between all possible 
pairs in the population. This measure, when normalized, 
is defined as: 
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where L is the chromosome length, P is the population 
size; pi is the ith individual in the population and HD is the 
Hamming distance function. 

Figure 7 shows the variation of the population's diversity 
for the KP. The results were obtained by the GA solving 
the KP problem with 100 items and compare the diversity 

(11) 



 

maintained by uniform crossover and transformation. To 
the other instances of the KP, the results were very 
similar. 
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Figure 7: Population's Diversity in the KP 

 

As we can see, the diversity of the population is higher 
when using transformation, indicating that the individuals 
are covering more areas of the search space. When 
applying uniform crossover, the population's diversity 
decreases to values near to zero avoiding the GA to 
continue evolving. In the Figure 4 we observed that the 
SGA stops evolving about generation 130. As Figure 7 
indicates, the diversity of the population achieves the 
lower levels about generation 130. 

In the domain of function optimization, the results were 
very similar. Figure 8 shows the diversity measure in the 
minimization of the Ackley function. Once again, there is 
a correspondence between the point where the diversity 
reaches low values and the point where the SGA stops 
evolving (20000 function evaluations in Figure 6). 
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Figure 8: Population's Diversity minimizing Ackley 
Function 

 

5 CONCLUSIONS 
In this paper, we introduced a new genetic operator 
inspired in bacterial genetics, called transformation. We 
used this operator as an alternative to crossover and we 
studied the GA performance solving two different classes 
of problems.  The results showed that the transformation 
mechanism is clearly superior to the SGA. Besides, with 
few individuals in population (or fewer function 
evaluations) transformation can achieve better solutions 
than crossover with larger populations. 

Observing the population’s diversity, we can see that 
transformation preserves a high degree of genetic 
variation among the individuals of the population.  

We are currently using this genetic operator in a classical 
dynamic optimization problem and the preliminary results 
show that the TGA is able to adapt to the new solution 
when a change occurs (Simões and Costa, 2001b). 

In order to enhance the GA performance when using this 
mechanism we are also implementing some modifications 
concerning some issues, namely, the assessment of the 
best transformation rate, the influence of the gene 
segment length and the generation of the gene segment 
pool. 
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