

On Biologically Inspired Genetic Operators: Transformation in the
Standard Genetic Algorithm

Anabela Simões1,2

1Instituto Superior de Engenharia de Coimbra
Quinta da Nora

3030 Coimbra - Portugal
abs@isec.pt

Ernesto Costa2
2Centro de Informática e Sistemas da Universidade de

Coimbra, Polo II - Pinhal de Marrocos
3030 Coimbra - Portugal

ernesto@dei.uc.pt

Abstract

In this paper, we introduce a biologically
inspired recombination operator that occurs in
the colonies of bacteria. The mechanism is called
transformation and is responsible for the genetic
variation and consequently the advantageous
characteristics that some bacteria possess. We
present an implementation of the transformation
mechanism in the standard GA (SGA) and we
compare its performance solving two different
classes of problems using either transformation
or the traditional crossover operators. The results
show that the GA using transformation is always
superior to the SGA. The good results obtained
by transformation seem to be related to the great
degree of diversity that the mechanism
introduces in population.

1 INTRODUCTION

For a population to survive changes in its environment it
must have sufficient genetic variety to adapt to the new
conditions: less genetically diverse populations may be at
greater risk. Known as genetic diversity, this great
variation within species is what allows populations to
adapt to changes in climate and other local environmental
conditions.

Genetic Algorithms (GAs) are inspired by genetics and
natural selection: a population evolves through a number
of generations, where the fittest individuals are more
likely to be selected to reproduce in each generation. This
process allows the evolution of the population to the best
solution (Holland, 1992; Goldberg, 1989). The
population’s diversity is introduced by the application of
two main genetic operators: mutation and crossover.
These operators produce changes in the individuals,
creating evolutionary advantages in some of them.

Nature maintains genetic diversity by several mechanisms
besides crossover and mutation. Some of those

mechanisms are: inversion, transduction, transformation,
conjugation, transposition and translocation (Gould and
Keeton, 1996).

Some researchers in the field of Evolutionary
Computation (EC) highlighted the importance of studying
different biologically inspired genetic operators. (Mitchell
and Forrest, 1994) and (Banzhaf et al., 1998) stress that it
would be important to analyze if some of the mechanisms
of rearranging genetic material present in the biological
systems, when implemented and used in the Evolutionary
Algorithms (EA), improve their performance.

Several authors have already used some biologically
inspired mechanisms besides crossover and mutation in
EA. For instance, inversion (Holland, 1992), conjugation
(Harvey, 1996), translocation (De Falco et al., 2000),
transduction (Nawa et al., 1999) and transposition
(Simões and Costa, 1999; 2001a) were already used as the
main genetic operators in the EA. As far as we know none
implementation of the transformation mechanism was
tested in EA.

Bacteria sometimes take up and incorporate fragments of
DNA from the environment. This is called transformation
(Clark and Russell, 1997).

In this paper, we propose a computational implementation
of the transformation mechanism and we study the GA
performance solving two different problems. The
empirical analysis will focus the application of the
traditional crossover operators and transformation, for
different population’s size. The two classes of problems
used to study the GA performance were function
optimization (Rastrigin, Griewangk, Schwefel and Ackley
test functions) and a combinatorial optimization problem
(0/1 knapsack problem).

This paper is organized in the following manner. First, in
section 2, we describe the biological functioning of the
transformation mechanism and we introduce our
computational implementation for the proposed
recombination mechanism. Section 3, details the
characteristics of the experimental environment, including
the selected problems to test the GA performance and the
GA parameters. In section 4, we make an exhaustive

Published in Spector, L., E. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, editors. 2001 Proceedings
the Genetic and Evolutionary Computation Conference, GECCO-2001, pp.584-591,
San Francisco, USA, 7-11 July, CA: Morgan Kaufmann Publishers, 2001.

comparison of the results obtained with the proposed
recombination operator and with the standard crossover
operators (1-point, 2-point and uniform crossover).
Finally, we present the relevant conclusions of the work.

2 TRANSFORMATION

In our work, we will propose a modified GA with the
introduction of a new biologically inspired operator,
called transformation. Next sections will describe this
mechanism.

2.1 BIOLOGICAL TRANSFORMATION

Some bacteria readily take up outside DNA. If they have
this ability, they are said to be competent. Competent
bacteria can absorb fragments of DNA proceeding from
dead bacteria and present in their environment.

Usually, transformation consists in the transfer of small
pieces of extra cellular DNA between organisms. These
strains of DNA, or gene segments, are extracted from the
environment and added to recipient cells (Russell, 1998).

After that, there are two possibilities, failure or success,
known technically as restriction and recombination.
Restriction is the destruction of the incoming foreign
DNA, since those bacteria assume that foreign DNA is
more likely to come from an enemy, such as a virus. In
this case, transformation fails. Recombination is the
physical incorporation of some of the incoming DNA into
the bacterial chromosome. If this happens, genes from the
assimilated segment replace some of the host cell’s
genetic information and bacteria are permanently
transformed. Once integrated in the chromosome, the
DNA segment is able to survive.

2.2 COMPUTATIONAL TRANSFORMATION

The DNA fragments to incorporate in the individuals of
the population are generated at the beginning of the
process. This DNA fragments consist in binary strings of
different lengths and will form the gene segment pool.

We will use the transformation mechanism as the main
genetic operator in the GA. Therefore, transformation is
applied every generation instead of the standard crossover
operator. First, we select the individuals to be transformed
using the roulette-wheel selection method and these
individuals are changed with a fixed probability. Part of
the gene segment pool is changed every generation, using
genetic information of the individuals of the population.

This modified GA will be referred as Transformation-
based GA (TGA) and is described in Figure 1.

The main aspects to consider in the implementation of
transformation are the origin of the gene segments that
will transform each individual and how the process of
transformation will occur. These aspects will be detailed
in the next sections.

Figure 1: The GA Modified with Transformation

2.2.1 The Basic Functioning of the Transformation
Mechanism

The GA starts with an initial population of individuals
and an initial pool of gene segments, both created at
random. In each generation, we select individuals to be
transformed and we modify them using the gene segments
in the segment pool. After that, the segment pool is
changed, using the old population to create part of the
new segments with the remaining being created at random
(see Figure 2).

Figure 2: Computational Transformation

2.2.2 Origin of the Gene Segments

The segments that each individual will take up from the
"surrounding environment" will proceed, mostly, from the
individuals existing in the previous generation. In the
used experimental setup, we changed the segment pool
every generation. The modifications were made replacing
70% of the segments with new ones, created from the
individuals of the old population. The remaining 30%
were created at random. The size of the gene segments is
also chosen in a random manner.

1. Generate Initial Population
 Generate Initial Gene Segment Pool
2. DO
 2.1. Evaluate Population
 2.2. Select Individuals
 2.3. Transform Individuals
 2.4. Replace Population with New Individuals
 2.5. Create New Gene Segment Pool
WHILE (NOT Stop_Condition)

Old
population

New
population

New Gene
Segment Pool

RANDOM

Gene segment
pool

Select individuals Select gene segs.

Transform Individuals

2.2.3 Transforming the Genetic Information of an
Individual

After selecting individuals to a mating pool, we use the
transformation mechanism to produce new individuals. In
this case, there is no sexual reproduction among the
individuals of the population. Each individual will
generate a new one through the process of transformation.
We can consider this process a form of asexual
reproduction. Each individual will be transformed using a
transformation probability.

The proposed mechanism can be described as follows: we
select a segment from the segment pool and we randomly
choose a point of transformation in the selected
individual. The segment is incorporated in the genome of
the individual, replacing the genes after the
transformation point, previously selected. Obviously, the
chromosome is seen as a circle. Proceeding this way the
chromosome length is kept constant. This corresponds to
the biological process where the gene segments, when
integrated in the recipient's cell DNA, replace some genes
in its chromosome. Figure 3 illustrates the process of
transforming an individual.

Figure 3: Transforming an Individual

3 EXPERIMENTAL SETTINGS
In order to investigate the performance of the TGA, we
selected two different classes of problems: a
combinatorial optimization problem (the 0/1 Knapsack
problem (KP)) and the function optimization domain.

We selected these problems, since that, they are well
known benchmarks to EA (Goldberg, 1989).

3.1 THE 0/1 KNAPSACK PROBLEM

The knapsack problem is a NP-complete problem, where
we have to find the feasible combination of objects so that
the total value of the objects put in the knapsack is
maximized, subject to a capacity or weight constraint.

Formally, let C be the weight limitation (maximum
permissible weight of the knapsack), let the integers
1,2,…,n denote n available types of objects, p

i
 and w

i
, the

value (or profit) and the weight of the ith object,
respectively. A solution for the problem is represented by
the binary vector xx of length n. Each element of xx can be
zero or one: if x

i
=1 then the item i was selected for the

knapsack.

The knapsack problem can be expressed as

i.e., maximizing the profits, subject to the weight
constraint

where x
i
 is the selected object.

3.1.1 The Implemented Knapsack

We used several knapsack types (with 50, 100, 250 and
500 items). The evaluation of the solutions used a penalty
function; the weights and profits vectors were created
without any correlation and we used average capacity for
the knapsack, as suggested in (Michalewicz, 1999).

The fitness f(x) for each binary string is determined as:

with Pen(x) the penalty function.

The penalty function is zero to all feasible solutions
(those that don’t exceed the knapsack capacity) and
greater than zero otherwise. There are many possibilities
for assigning the penalty value to the infeasible solutions.
In our case, we considered a logarithmic penalty function
defined by expression (4).

with ρ = max
i=1..n

{pi/wi}

The generation of the vectors of profits (P[i]) and weights
(W[i]) was made using the uncorrelated method, i.e.,

 W[i]=(uniformly) random ([1..v])

 P[i]=(uniformly) random ([1..v])

The value used for the parameter v was 10.

The capacity of the knapsack (average capacity) was
calculated by:

,Cw.x i

n

1i i ≤∑ =
(2)

∑ =

n

1i ii x.pmax (1)

()xPenp.x)x(f
n

1i ii −= ∑ =
(3)

(5) []∑ =
=

n

1i
iW5.0C

Mating
Pool

Gene segment
pool

Select Individual Select Gene Seg.

Transform Selected
Individual

Transformation point

()()Cw.x.1log)x(Pen
n

1i ii2 −+= ∑ =
ρ (4)

3.2 TEST FUNCTIONS

We also evaluate the transformation mechanism by
comparing its performance with the performance of the
SGA (using three standard crossover operators) on several
function optimization problems. To assess the quality of
the algorithms we used the minimum function value
found after a fixed number of function evaluations
(50000, 100000 and 200000 in this case). The selected
functions selected to analyze the GA performance were
Rastrigin, Schwefel, Griewangk, and Ackley functions. All
those functions are highly multimodal and have been used
in other experimental comparisons of EA (Potter and De
Jong, 1994; Gordon and Whitley, 1993).

The Rastrigin function is defined as:

∑
=

Π−+=
n

i
ii xAxnAxf

1

2)2cos(**)(

where n=20, A=10 and –5.12 ≤ xi ≤ 5.12. The main
characteristic of this function is the existence of many
sub-optimal peaks whose values increase as the distance
of the global optimum point increases

The Schwefel function is defined as:

()i

n

i
i xxnVxf ∑

=

+=
1

sin*)(

where n=10, V=418.9829 and –500 ≤ xi ≤ 500. The global
minimum of the function is zero. The interesting aspect of
this function is the existence of a second-best minimum
far away from the global minimum, which can trap the
optimization algorithms on a local optimum.

The Griewangk function is defined as:

∑ ∏
= =









−+=

n

i

n

i

ii

i

xx
xf

1 1

2

cos
4000

1)(

where n=10 and –600 ≤ xi ≤ 600. This function has a
product term, which introduces interdependency among
the variables.

The Ackley function is defined as:






−










−−+= ∑

=

)2cos(
1

exp
1

2.0exp2020)(
1

2
i

n

i
i x

n
x

n
exf π

where n=30 and –30 ≤ xi ≤ 30. At a low dimension the
landscape of this function is unimodal, however, the
second exponential term covers the landscape with many
small peaks and valleys.

3.3 THE PARAMETERS OF THE GENETIC
ALGORITHM

The GA was first implemented with crossover (1-point. 2-
point and uniform) and then with transformation. In the

first problem, the 0/1 knapsack, we executed experiments
to study the effect of the population size in the GA
efficiency. Therefore, the population size varied between
20, 50, 100 and 200 individuals. In this problem, the GA
evolved through 1000 generations.

For the function optimization domain, we fixed the
maximum number of function evaluations equal to
200000.

In both classes of problems, we used binary
representation to encode the problem, the roulette wheel
selection and an elite size of two individuals. The
mutation and crossover/transformation rate were 0.1%
and 70%, respectively. The results reported in the next
sections are the average computed over twenty-five runs.

3.4 EVALUATION MEASURE

We used the De Jong's off-line measure to compare GA
efficiency when applied crossover or transformation (De
Jong 1975). This measure is defined by:

where f e

 * = best {fe(1), fe(2), ..., fe(n)} and T is the
number of runs. This means that off-line measure is the
average of the best individuals in each generation. Due to
the 25 trials, the average of the 25 runs was evaluated.

4 EXPERIMENTAL RESULTS
Next sections show the averaged results obtained in the
knapsack problem and in the selected test functions.

4.1 RESULTS OBTAINED IN THE KNAPSACK
PROBLEM

The proposed mechanism allowed the GA to achieve
better solutions than the SGA using one-point, two-point
or uniform crossover. This observation can be generalized
to all the tested instances of the KP, i.e., with 50, 100, 250
and 500 items. Table 1 summarizes all the results for the
0/1 KP using the SGA and the TGA with different
population’s sizes. The best solutions found for n=50,
100, 250 and 500 are marked in bold.

As we can see, the population size is an important
parameter when using crossover. In fact, increasing the
population size from 50 to 100 or 200 individuals,
crossover's performance shows some improvements.
Using transformation with smaller populations, the GA
obtained better results than the SGA with larger
populations. As we can see in the table, with only 20
individuals in the population the TGA achieves solutions
superior to the ones achieved by the SGA with 200
individuals.

∑
=

=
T

t
ee tf

T
gX

1

**)(*
1

)(

(6)

(7)

(8)

(9)

(10)

Table 1: Summary of the Obtained Results using the SGA and the TGA with Different Population's Size

 Genetic Operator

 One-point Crossover Two-point Crossover Uniform Crossover Transformation

 P. Size→ 50 100 200 50 100 200 50 100 200 20 50 100 200

50 227,77 236,48 244,17 245,82 253,91 263,10 265,00 271,58 273,56 278,63 284,55 287,51 300,76

100 358.71 454.66 466.24 439.65 491.63 514.46 490.97 511.70 520.96 528.21 551.28 576.93 590.40

250 950.08 1074.39 1089.54 923.92 1120.51 1036.18 1037.94 1211.10 1173.67 1330.68 1361.94 1375.79 1410.28

N
º

of
 I

te
m

s

500 1734.66 1985.96 1959.66 1845.88 1972.49 1996.18 2001.11 2303.35 2183.51 2548.29 2630.82 2633.53 2656.17

In order to understand these results, it is important to see
how the GA evolved through the 1000 generations. In
Figure 4, we show a representative example for the KP
with 100 items. The figure compares the GA
performance using uniform crossover with 200
individuals and transformation with a population of 50
binary strings.

350

400

450

500

550

600

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

Generations

F
itn

es
s

SGA (Uniform Cx.)

TGA

Figure 4: Comparing the SGA (200 inds.) and the TGA
(50 inds.) Performances

As Figure 4 shows, uniform crossover only allow the
SGA to improve in the first generations and after that the
evolution stops. The TGA evolved during a long period,
and was able to reach better results than crossover, even
with a smaller population.

To analyze the influence of the population size in the
GA's performance when using transformation we show, in
Figure 5, the results obtained for the KP with 100 items.
To the other instances, the results are quite similar. We
can see that when using larger populations the maximum
result obtained is superior.

Comparing the execution times spent by the four genetic
operators solving the KP, we can see that transformation
is the mechanism that consumes more time. Nevertheless,

the differences are relatively small compared with the
crossover operators. The time spent by the TGA is
approximately 7% superior to the time spent by the
operator that obtains the worst results (one-point
crossover) and 3% superior to the best crossover operator
(uniform crossover).

300

350

400

450

500

550

600

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

Generations

F
itn

es
s

Figure 5: The TGA's Performance using Different
Population's Size

Table 2 reports the results (in seconds) obtained running
25 trials of the SGA and the TGA with a population of
200 individuals, in a Pentium II with a 300 MHz
processor.

Table 2: Time Spent to Solve the 0/1 Knapsack Problem

Nº items Cx1 Cx2 CxU TGA

50 2726 3276 3302 3702

100 6642 6757 6807 7095

250 15736 15842 16005 16656

500 30870 31761 32356 33382

Pop=20

 Pop=50

 Pop=100

 Pop=200

Table 3: Function Optimization: Summary of the Results (minimization)

 Genetic Operator

 One-point Crossover Two-point Crossover Uniform Crossover Transformation

 Nº evals 50000 100000 200000 50000 100000 200000 50000 100000 200000 50000 100000 200000

Rastrigin 88.170 88.170 88.170 67.639 67.639 67.639 63.739 63.739 63.739 73.272 52.518 36.682
Griewangk 0.323 0.323 0.323 0.259 0.259 0.259 0.244 0.244 0.244 0.074 0.026 0.010
Schwefel 665.406 665.406 665.406 557.770 557.770 557.770 456.273 456.273 456.273 220.878 62.404 8.695

F
un

ct
io

n

Ackley 16.248 16.248 16.248 15.102 15.102 15.102 14.181 14.181 14.181 11.617 8.645 5.941

4.2 RESULTS OBTAINED IN THE FUNCTION
OPTIMIZATION DOMAIN

The TGA obtained, in the entire set of test functions, the
best solutions after 200000 function evaluations. Table 3
reports the achieved results. The results presented are
those obtained after 50000, 100000 and 200000 function
evaluations using the SGA and the TGA. The best
solutions are marked in bold.

In this case, the GA using the transformation mechanism
evolves very slowly to the achieved result. On the other
hand, the SGA converges very rapidly to the obtained
value, but is unable to continue evolving. Besides, just
like in the KP, in the function optimization domain, TGA
obtained better results than SGA with fewer number of
function evaluations.

The graphical representation shown in Figure 6 illustrates
the SGA and TGA performances minimizing the Ackley
function, but we observed a similar behavior in all the test
functions. Once the population converges to a certain
value, SGA is incapable of continue exploring other zones
of the search space. The TGA evolves slower, but can
continue improving during the 2000 generations.

0

5

10

15

20

25

10
0

15
10

0

30
10

0

45
10

0

60
10

0

75
10

0

90
10

0

10
51

00

12
01

00

13
51

00

15
01

00

16
51

00

18
01

00

19
51

00

Function Evaluations

F
itn

es
s

SGA (Uniform Cx)
TGA

Figure 6: SGA and TGA evolution in 200000 function
evaluations

Once again, these results appear to be a consequence of
the loss of diversity in the population when using the

crossover operators. TGA evolves during the entire
simulation because the genetic variation of the individuals
is kept in high levels. In the next section, we will focus
the population's diversity measured in both problem
domains.

Concerning the computational times, once again, TGA
was the slower algorithm, but the differences to the times
used by the crossover operators are quite small. TGA was
approximately 7% slower than one-point crossover (the
operator which obtained the worst results) and 4% slower
than uniform crossover (which obtained the best
performance among the crossover operators). Table 4
shows the times (in seconds) spent in the execution of the
25 trials for the minimization of the test functions.

Table 4: Time Spent to Minimize the Test Functions

Function Cx1 Cx2 CxU TGA
Rastrigin 7039 7059 7298 7698

Griewangk 5338 5360 5478 5686
Schwefel 4683 4722 4832 4989
Ackley 11320 11588 11667 12152

4.3 POPULATION'S DIVERSITY

The main reason for the good results obtained by the TGA
seems to be the great diversity that the proposed
mechanism introduces in the population. This can be the
explanation for the fact of the TGA with 20 individuals
outperforms the SGA with 200. To compare the diversity
in the population we used a standard measure, which is
the sum of the Hamming distances between all possible
pairs in the population. This measure, when normalized,
is defined as:

∑∑
= =−

=
P

i

P

j
ji ppHD

PLP
PopDiv

1 1

),(
)1(

1
)(

where L is the chromosome length, P is the population
size; pi is the ith individual in the population and HD is the
Hamming distance function.

Figure 7 shows the variation of the population's diversity
for the KP. The results were obtained by the GA solving
the KP problem with 100 items and compare the diversity

(11)

maintained by uniform crossover and transformation. To
the other instances of the KP, the results were very
similar.

0

0,1

0,2

0,3

0,4

0,5

0,6

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

Generations

D
iv

er
si

ty
 M

ea
su

re

SGA (Uniform Cx)
TGA

Figure 7: Population's Diversity in the KP

As we can see, the diversity of the population is higher
when using transformation, indicating that the individuals
are covering more areas of the search space. When
applying uniform crossover, the population's diversity
decreases to values near to zero avoiding the GA to
continue evolving. In the Figure 4 we observed that the
SGA stops evolving about generation 130. As Figure 7
indicates, the diversity of the population achieves the
lower levels about generation 130.

In the domain of function optimization, the results were
very similar. Figure 8 shows the diversity measure in the
minimization of the Ackley function. Once again, there is
a correspondence between the point where the diversity
reaches low values and the point where the SGA stops
evolving (20000 function evaluations in Figure 6).

0

0,1

0,2

0,3

0,4

0,5

0,6

10
0

15
10

0

30
10

0

45
10

0

60
10

0

75
10

0

90
10

0

10
51

00

12
01

00

13
51

00

15
01

00

16
51

00

18
01

00

19
51

00

Function Evaluations

D
iv

er
si

ty
 M

ea
su

re

SGA (Uniform Cx)

TGA

Figure 8: Population's Diversity minimizing Ackley
Function

5 CONCLUSIONS
In this paper, we introduced a new genetic operator
inspired in bacterial genetics, called transformation. We
used this operator as an alternative to crossover and we
studied the GA performance solving two different classes
of problems. The results showed that the transformation
mechanism is clearly superior to the SGA. Besides, with
few individuals in population (or fewer function
evaluations) transformation can achieve better solutions
than crossover with larger populations.

Observing the population’s diversity, we can see that
transformation preserves a high degree of genetic
variation among the individuals of the population.

We are currently using this genetic operator in a classical
dynamic optimization problem and the preliminary results
show that the TGA is able to adapt to the new solution
when a change occurs (Simões and Costa, 2001b).

In order to enhance the GA performance when using this
mechanism we are also implementing some modifications
concerning some issues, namely, the assessment of the
best transformation rate, the influence of the gene
segment length and the generation of the gene segment
pool.

Acknowledgements

This paper was partially supported by the Portuguese
Ministry of Science and Technology under the program
POSI.

References

W. Banzhaf, P. Nordin, R. E. Keller and F. D. Francone
(1998). Genetic Programming - An Introduction - On the
Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann

D. Clark and L. Russell (1997). Molecular Biology Made
Simple and Fun. Cache River Press.

I. De Falco, A. Iazzetta, E. Tarantino and A. Della Cioppa
(2000). On Biologically Inspired Mutations: The
Translocation. In Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference
(GECCO'00), 70-77, Las Vegas, USA, 8-12 July 2000.

K. A. De Jong (1975). Analysis of the Behavior of a
Class of Genetic Adaptive Systems. Ph.D. Dissertation,
Department of Computer and Communication Science,
University of Michigan.

D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Publishing Company, Inc.

V. S. Gordon and D. Whitley (1993). Serial and Parallel
Genetic Algorithms as Function Optimizers. In S. Forrest
(ed.), Proceedings of the Fifth International Conference
on Genetic Algorithms (ICGA5), 177-183, Morgan
Kaufmann.

J. L. Gould and W. T. Keeton (1996). Biological Science.
W. W. Norton & Company.

I. Harvey (1996). The Microbial Genetic Algorithm.
Submitted to Evolutionary Computation. MIT Press.

J. H. Holland (1992). Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. 1st MIT
Press edition, MIT Press.

Z. Michalewicz (1999). Genetic Algorithms + Data
Structures = Evolution Programs. 3rd Edition Springer-
Verlag.

M. Mitchell and S. Forrest (1994). Genetic Algorithms
and Artificial Life. Artificial Life 1(3):267-289.

N. Nawa, T. Furuhashi, T. Hashiyama and Y. Uchikawa
(1999). A Study of the Discovery of Relevant Fuzzy Rules
Using Pseudo-Bacterial Genetic Algorithm. IEEE
Transactions on Industrial Electronics.

M. A. Potter and K. De Jong (1994). A Cooperative
Coevolutionary Approach to Function Optimization. In
the Proceedings of the Third Parallel Problem Solving
from Nature (PPSN3), Jerusalem, Israel, 249-257,
Springer-Verlag.

P. J. Russell (1998). Genetics. 5th edition, Addison-
Wesley.

A. Simões and E. Costa (1999). Transposition versus
Crossover: An Empirical Study. Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M.,
and Smith, R. E. (eds.), Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO'99), 612-
619, Orlando, Florida USA, CA: Morgan Kaufmann.

A. Simões and E. Costa (2001a). An Evolutionary
Approach to the Zero/One Knapsack Problem: Testing
Ideas from Biology. In the Proceedings of the Fifth
International Conference on Neural Networks and Genetic
Algorithms (ICANNGA' 2001), 22-25 April, Prague,
Czech Republic, Springer-Verlag.

A. Simões and E. Costa (2001b). Using Biological
Inspiration to Deal with Dynamic Environments.
Submitted to the 7th International Conference on Soft
Computing (MENDEL’2001).

