

DEPARTAMENTO DE

ENGENHARIA

INFORMÁTICA

FACULDADE DE CIÊNCIAS

E TECNOLOGIA DA

UNIVERSIDADE DE

COIMBRA

Internal Report

DEI

Coimbra - 2009

Using Web Security Scanners to

Detect Vulnerabilities in Web Services

Marco Vieira

Nuno Antunes

Henrique Madeira

Vieira, M., Antunes, N., Madeira, H., “Using Web Security Scanners to Detect Vulnerabilities in

Web Services”, (accepted) IEEE/IFIP Intl Conf. on Dependable Systems and Networks, DSN 2009,

Lisbon, Portugal, June 2009; Internal report available at http://eden.dei.uc.pt/~mvieira

 - 1 -

Using Web Security Scanners to

Detect Vulnerabilities in Web Services

Marco Vieira, Nuno Antunes, and Henrique Madeira

CISUC, Department of Informatics Engineering

University of Coimbra – Portugal

mvieira@dei.uc.pt, nmsa@student.dei.uc.pt, henrique@dei.uc.pt

Paper category: Practical Experience Report

Contact author: Marco Vieira

Address: DEI/FCTUC – Polo2

 Universidade de Coimbra

 3030-290 Coimbra, Portugal

Phone/fax: +351 239 790 000 / +351 239 701 266

The material included in this paper has been cleared through

authors’ affiliations.

Word count: ~4900

Keywords: Web services, security, vulnerabilities, vulnerability

scanners, penetration testing.

Abstract

Although web services are becoming business-

critical components, they are often deployed with criti-

cal software bugs that can be maliciously explored.

Web vulnerability scanners allow detecting security

vulnerabilities in web services by stressing the service

from the point of view of an attacker. However, re-

search and practice show that different scanners have

different performance on vulnerabilities detection. In

this paper we present an experimental evaluation of

security vulnerabilities in 300 publicly available web

services. Four well know vulnerability scanners have

been used to identify security flaws in web services

implementations. A large number of vulnerabilities has

been observed (177), which confirms that many serv-

ices are deployed without proper security testing. Ad-

ditionally, the differences in the vulnerabilities de-

tected and the high number of false-positives (35% and

40% in two cases) and low coverage (less than 20%

for two of the scanners) observed highlight the limita-

tions of web vulnerability scanners on detecting secu-

rity vulnerabilities in web services.

1. Introduction

Ranging from on-line stores to large corporations,

web services are increasingly becoming a strategic

vehicle for data exchange and content distribution [1].

Web services provide a simple interface between a

provider and a consumer [1] and are supported by a

complex software infrastructure, which typically in-

cludes an application server, the operating system and

a set of external systems (e.g., databases, payment

gateways, etc). The Simple Object Access Protocol

(SOAP) [1] is used for exchanging XML-based mes-

sages between the consumer and the provider over the

network (using for example http or https protocols). In

each interaction the consumer (client) sends a request

SOAP message to the provider (server). After process-

ing the request, the server sends a response message to

the client with the results. A web service may include

several operations (in practice, each operation is a

method with several input parameters) and is described

using WSDL (Web Services Definition Language) [2],

which is a XML format used to generate server and

client code, and for configuration. A broker is used to

enable applications to find web services.

Web services become so widely exposed that any

existing security vulnerability will most probably be

uncovered and exploited by hackers. To prevent vul-

nerabilities, developers should apply best coding prac-

tices, perform security reviews of the code, execute

penetration tests, use code vulnerability analyzers, etc.

However, many times developers focus on the imple-

mentation of functionalities and on satisfying the

user’s requirements and disregard security aspects.

Additionally, numerous developers are not specialized

on security and the common time-to-market constraints

limit an in depth test for security vulnerabilities.

Security vulnerabilities like SQL Injection and

XPath Injection seem particularly relevant in web serv-

ices as they are directly related to the way the web

service code is structured [3][4]. Basically, SQL Injec-

tion and XPath Injection attacks take advantage of im-

proper coded applications to change SQL commands

that are sent to the database or tamper XPath queries

used to access parts of an XML document.

There are two main approaches to test web applica-

tions for vulnerabilities:

! White box testing: consists of the analysis of the

source code of the web application. This can be

done manually or by using code analysis tools like

FORTIFY [5], Ounce [6] or Pixy [7]. The problem

is that exhaustive source code analysis may be dif-

ficult and cannot find all security flaws because of

 - 2 -

the complexity of the code.

! Black box testing: consists in the analyses of the

execution of the application in search for vulner-

abilities. In this approach, also known as penetra-

tion testing, the scanner does not know the internals

of the web application and it uses fuzzing tech-

niques over the web HTTP requests.

Web vulnerability scanners are often regarded as an

easy way to test applications against vulnerabilities. In

fact, vulnerability scanners provide an automatic way

to search for vulnerabilities avoiding the repetitive and

tedious task of doing hundreds or even thousands of

tests by hand for each vulnerability type. Most of these

scanners are commercial tools (e.g., Acunetix Web

Vulnerability Scanner [8], IBM Rational AppScan [9],

and HP WebInspect [10]), but there are also some free

application scanners (e.g., Foundstone WSDigger [11]

and wsfuzzer [12]) with limited use, as they lack most

of the functionalities of their commercial counterparts.

Previous research suggests that the effectiveness of

scanners in the detection of vulnerabilities varies a lot.

In [13] it is proposed a method to evaluate and bench-

mark automatic web vulnerability scanners using soft-

ware fault injection techniques. Software faults are

injected in the application code and the web vulnerabil-

ity scanning tool under evaluation is executed, showing

their strengths and weaknesses concerning coverage of

vulnerability detection and false positives. Three lead-

ing commercial scanning tools were evaluated and the

results showed that in general the coverage is low and

the percentage of false positives is very high. However,

this study was focused on a specific family of applica-

tions, namely database centric web based applications

written in PHP, and the results obtained cannot be eas-

ily generalized, especially if we take into account the

specificities of web services environments.

In this work we used four commercial vulnerability

scanners (including two different versions of a given

brand) to identify security flaws in the implementation

of 300 publicly available web services. The goal was to

study the effectiveness of the scanners and to try to

identify common types of vulnerabilities in web serv-

ices environments. The results obtained showed that

many of the services tested were deployed without

proper security testing as a large number of vulner-

abilities has been detected (177). A key observation

was that different scanners detect different vulnerabili-

ties, which indicates that the coverage of an individual

scanner is far from being perfect. The rate of false-

positives (vulnerabilities detected that did not exist)

and coverage (vulnerabilities that existed and were not

detected) observed highlight some limitations of web

vulnerability scanners on detecting vulnerabilities in

web services.

In summary, this practical experience report focuses

on the following three questions:

! What is the coverage of the vulnerability scanners

tested when used in a web services environment?

! What is the false-positive rate of the web vulner-

ability scanners tested when used in a web services

environment?

! What are the most common types of vulnerabilities

in web services environments?

The structure of the paper is as follows. The next

section presents the experimental study. Section 3 pre-

sents and discusses the results. Section 4 concludes the

paper and presents ideas for future work.

2. The experimental study

Our experimental study consisted of four steps:

1. Preparation: select the vulnerability scanners and

a large set of publicly available web services.

2. Execution: use the vulnerability scanners to scan

the services to identify potential vulnerabilities.

3. Verification: perform manual testing to confirm

that the vulnerabilities identified by the scanners

do exist (i.e., are not false positives).

4. Analysis: analyze the results obtained and sys-

tematize the lessons learned.

2.1. Web services tested

A set of 300 publicly available services was tested.

The following bullets point out some important aspects

concerning the web services selected:

! Several technologies were considered, including

.NET, Java, and Delphi.

! Web services are owned by different relevant par-

ties, including Microsoft, Google, and Xara.

! Some web services implement the same function-

ally (e.g., Text Disguise and Free Captcha Service).

! A small number of web services are used in real

businesses in the field (e.g., Portuguese Postal Of-

fice Orders Cost, Mexican Postal Codes).

The web services selection was as random as possi-

ble. The following paragraphs describe the web serv-

ices selection process.

The first step was to identify a large set of web

services. The first source was a web site that lists pub-

licly available web services (http://xmethods.net/).

From this list we have selected the first set of 450 web

services. Then we used the Web Services Search En-

gine (http://seekda.com/) to discover additional serv-

ices. seekda is a portal that enables searching for public

web services based on the services’ description. To

discover services we have used a large set of generic

 - 3 -

keywords, ranging from popular tags (e.g., business,

tourism, commercial, university, etc) to queries with

countries (e.g., country:AR, country:PT, country:US,

etc) and keywords related to company names (e.g.,

Oracle, Sun, Microsoft, Google, Acunetix).

The resulting list included 6180 web services. As it

was not possible to test such a large set of services we

decided to randomly select 300 services from this list.

However, some of the services initially selected had to

be discarded due to several reasons, namely:

! Invalid/malformed WSDL: at least one of the

scanners could not parse the WSDL description.

! Unable to retrieve WSDL: at least one of the

scanners could not find the WSDL.

! No methods found: the web service has no opera-

tions to scan.

! Authentication required: some operations require

authentication, which means that the service cannot

be fully tested. This prevents the observation of

vulnerabilities in potentially interesting functionali-

ties of services (the private functionalities), which

would obviously be of high interest.

! Unhandled exception: the tests abort and/or one of

the scanners closes unexpectedly.

! Communication errors: at least one of the scan-

ners cannot complete requests due to problems in

HTTP Request or SSL Connection Error.

! Scanning problems: at least one of the scanners

reported a generic error like "unable to add transac-

tion" or "unable to render object".

! Testing duration: due to practical reasons, we de-

cided to drop the services for which the scanning

process takes more than two hours.

As the goal was to test 300 web services, the serv-

ices discarded were replaced by others randomly se-

lected from the initial list. 316 services were explored

and had to be discarded due to: invalid/malformed

WSDL (117); unable to retrieve WSDL (30); no meth-

ods found(20); authentication required (40); unhandled

exception (19); communication errors (50); scanning

problems (24); and testing duration (15).

Due to space restrictions, the list of web services

tested is not included in this paper. It is available at

[14] together with the detailed results obtained.

2.2. Vulnerability scanners studied

In the present study we have tested four commercial

web vulnerability scanners widely used, including two

different versions of a specific brand. The following

paragraphs briefly introduce these scanners.

HP WebInspect “performs web application security

testing and assessment for today's complex web appli-

cations, built on emerging Web 2.0 technologies. HP

WebInspect delivers fast scanning capabilities, broad

security assessment coverage and accurate web appli-

cation security scanning results” [10]. This tool in-

cludes pioneering assessment technology, including

simultaneous crawl and audit (SCA) and concurrent

application scanning. It is a broad application that can

be applied for penetration testing in web-based applica-

tions.

IBM Rational AppScan “is a leading suite of auto-

mated Web application security and compliance as-

sessment tools that scan for common application vul-

nerabilities” [9]. This tool is suitable for users ranging

from non-security experts to advanced users that can

develop extensions for customized scanning environ-

ments. IBM AppScan can be used for security testing

in web applications, including web services.

Acunetix Web Vulnerability Scanner “is an auto-

mated web application security testing tool that audits

your web applications by checking for exploitable

hacking vulnerabilities” [8]. Besides web services,

Acunetix Web Vulnerability Scanner can be applied

for security testing in web applications in general.

For the results presentation we have decided not to

mention the brand and the versions of these scanners to

assure neutrality and because commercial licenses do

not allow in general the publication of tool evaluation

results. This way, the scanners presented above are

referred in the rest of this paper as VS1.1, VS1.2, VS

2, and VS3 (without any order in particular). Vulner-

ability scanners VS1.1 and VS1.2 refer to the two ver-

sions of the same product.

3. Results and discussion

The following subsections present and discuss the

results obtained and the lessons learned during this

study. Due to space constraints we do not present the

detailed results (i.e., results for the individual services).

Interested readers can obtain them at [14].

3.1. Overall results analysis

Table 1 presents the overall results of the study. For

each scanner it is presented the total number of vulner-

abilities and the number of services in which those

vulnerabilities were found. The scanners pointed six

different types of vulnerabilities, namely:

! SQL Injection: it is possible “to alter the con-

struction of backend SQL statements” [15]. An at-

tacker can read or modify database data and, in

some cases, execute database administration opera-

tions or commands in the system [4].

! XPath Injection: it is possible to modify an XPath

query to “be parsed in a way differing from the

 - 4 -

programmer's intention” [15]. Attackers may gain

access to information in XML documents [4].

! Code Execution: it is possible to manipulate the

application inputs to trigger server-side code execu-

tion [4]. An attacker can exploit this vulnerability

to execute malicious code in the server machine.

! Buffer Overflow: it is possible to manipulate in-

puts in such a way that causes buffer allocation

problems, including overwriting of parts of the

memory [4]. An attacker can exploit this causing

Denial of Service or, in worst cases, “alter applica-

tion flow and force unintended actions” [15].

! Username/Password Disclosure: the web service

response contains information related to usernames

and/or passwords. An attacker can use this informa-

tion to get access to private data [4].

! Server Path Disclosure: the response contains a

fully qualified path name to the root of the server

storage system. An attacker can use this info to dis-

cover the server file system structure and devise

other security attacks [4].

An additional result provided by the scanners is re-

lated to application errors obtained due to invalid pa-

rameters. Scanners classify these situations as low im-

portance security issues. In fact, these errors are due to

the fact that input parameters are not correctly checked

(i.e., the service may have robustness problems). As

shown in Figure 1, the four scanners detected different

application errors (although the two versions of the

same scanner have similar results). This is obviously

dependent on the tests performed by each scanner. Al-

though in few cases application errors can be mali-

ciously explored (e.g., if the error message discloses

sensitive information about the service code or struc-

ture), in most cases they are not related to security vul-

nerabilities. Thus, in the present work we have decided

to exclude them from further analysis.

As we can see in Table 1, different scanners report

different types of vulnerabilities. The only exception is

SQL Injection that is reported by all scanners. This is a

first indicator that scanners implement different forms

of penetration tests and that the results from different

scanners may be difficult to compare. Nevertheless,

results suggest that in order to have a good coverage

the user will have to use several scanners instead of

relying in only one.

Scanners VS1.1 and

VS1.2 (two different ver-

sions of the same brand) are

the only ones that detected

XPath Injection vulnerabili-

ties. An important aspect is

that, when compared to SQL

Injection, the number of

XPath-related vulnerabilities is quite small. In fact,

XPath vulnerabilities were detected in a single service,

indicating that most web services make use of a data-

base instead of XML documents to store information.

Figure 1. Application errors detected.

Scanners VS1.1 and VS1.2 detected a code execu-

tion vulnerability. This is a particularly critical vulner-

ability that allows attackers to execute code in the

server. After discovering this vulnerability we per-

formed some manual tests and we were amazed by the

possibility of executing commands (e.g., ‘cat

/etc/passwd’, ‘ls -la’) and get the corresponding answer

in a readable format.

VS3 was the only one pointing vulnerabilities re-

lated to buffer overflow, username and password dis-

closure, and server path disclosure.

As mentioned before, SQL Injection is the only type

of vulnerability that was detected by the four scanners

used. However, different scanners reported different

vulnerabilities in different web services. In fact, the

number of SQL Injection vulnerabilities detected by

VS1.1 and VS1.2 is much higher than the number of

vulnerabilities detected by VS2 and VS3. Thus we

decided to look at this vulnerability type in more detail.

The intersection areas of the circles in Figure 2 rep-

resent the number of vulnerabilities detected by more

than one scanner (the number of vulnerabilities de-

tected is shown; zero is the value when no number is

presented). Note that the area of each circle is roughly

proportional to the number of vulnerabilities detected,

but there is no correspondence between the size of the

intersection areas and the number of vulnerabilities (it

is too complex to represent graphically).

VS1.1 VS1.2 VS2 VS3
Vulnerability Types

Vuln. # WS # Vuln. # WS # Vuln. # WS # Vuln. # WS

SQL Injection 217 38 225 38 25 5 35 11

XPath Injection 10 1 10 1 0 0 0 0

Code Execution 1 1 1 1 0 0 0 0

Possible Parameter Based Buffer Overflow 0 0 0 0 0 0 4 3

Possible Username or Password Disclosure 0 0 0 0 0 0 47 3

Possible Server Path Disclosure 0 0 0 0 0 0 17 5

Total 228 40 236 40 25 5 103 22

Table 1. Overall results.

 - 5 -

Figure 2. SQL Injection vulnerabilities.

Figure 2 clearly shows that the four scanners de-

tected different sets of SQL Injection vulnerabilities

and the differences are considerable, pointing again to

relatively low coverage of each vulnerability scanner

individually. In fact, even for VS1.1 and VS1.2, two

consecutive versions of the same scanner, there are

considerable differences. VS1.1, the older version,

detected 19 SQL Injection vulnerabilities that were not

detected by VS1.2. On the other hand, VS1.2 detected

27 vulnerabilities that were not detected by VS1.1.

3.2. False positives analysis

The results presented so far do not consider false

positives (i.e., situations where scanners detected a

vulnerability that in the reality does not exist). How-

ever, it is well known that false positives are very diffi-

cult to avoid. This way, we decided manually confirm

the existence (or not) of each vulnerability detected.

Confirming the existence of a vulnerability without

having access to the source code is a difficult task.

Thus, we defined a set of rules and corresponding

checks to classify the vulnerabilities detected by the

scanners in three groups: a) Confirmed false positives,

b) Confirmed vulnerabilities, and c) Doubtful.

Detected vulnerabilities are classified as false

positives if meet one of the following cases:

! For SQL Injection vulnerabilities, if the er-

ror/answer obtained is related to an applica-

tion robustness problem and not to a SQL

command (e.g., a NumberFormatException).

! The error/value in the web service response

is not caused by the elements "injected" by

the scanner. In other words, the same prob-

lem occurs when the service is executed with

valid inputs.

! For path and username/password disclosure,

the information returned by the service is

equal to the information submitted by the

client (e.g., the vulnerability scanner) when

invoking the web service. In other words,

there is no information disclosure.

Detected vulnerabilities are classified as confirmed

vulnerabilities if satisfy one of the next conditions:

1. For SQL Injection vulnerabilities, if it is possible to

observe that the SQL command executed was in-

validated by the values "injected" by the scanner

(or manually). This is possible if the SQL com-

mand or part of it is included in the web service re-

sponse (e.g., stack trace).

2. For SQL Injection vulnerabilities, if the “injected”

values lead to exceptions raised by the database

server.

3. If it is possible to access unauthorized services or

web pages (e.g., by breaking the authentication

process using SQL Injection).

4. For Path disclosure, if it is possible to observe the

location of folders and files in the server.

5. For XPath Injection, if the “injected” values lead to

exceptions raised by the XPath parser.

6. For Buffer Overflow, if the server does not answer

to the request or raises an exception specifically re-

lated to buffer overflow.

If none of these rules can be applied then there is no

way to confirm whether a vulnerability really exists or

not. These cases were classified as doubtful. Figure 3

shows the results for SQL Injection vulnerabilities.

As we can see, the number of vulnerabilities that we

were not able to confirm (doubtful cases) is low for

VS1.1, VS1.2, and VS3 (always less than 15%), but

considerably high for VS2 (32%). This means that the

false positive results are relatively accurate for the first

three scanners, but it is an optimistic figure (zero false

positives) for scanner VS2. Obviously, we can also

read the false positive results shown in Figure 3 as a

range, going from an optimistic value (confirmed false

positives) to a pessimistic value (confirmed false posi-

tives + doubtful cases).

The number of (confirmed) false-positives is high

Scanner % FP

VS1.1 40.09

VS1.2 36.89

V2 0

VS3 25.71

Scanner
%

Doubtful

VS1.1 6.45

VS1.2 11.56

V2 32

VS3 14.29

Figure 3. False positives observed for SQL Injection.

 - 6 -

for scanners VS1.1 and VS1.2, and is also high for

VS3, in relative terms. Scanner VS2 shows zero con-

firmed false positives, but it detected a fair percentage

(8 out of 25) of vulnerabilities that were classified as

doubtful, thus a pessimistic interpretation of results is

that 8 out of 25 vulnerabilities may be false positives.

Obviously, the low number of vulnerabilities detected

by VS2 and VS3 (25 and 35 respectively) also limits

the absolute number of false positives.

Table 2 presents the false positive results for the

other vulnerabilities. In this case, we were able to con-

firm the existence (or inexistence) of all vulnerabilities

and no doubts remained. An interesting aspect is that

all XPath injection and Code Execution vulnerabilities

were confirmed. On the other hand, all vulnerabilities

related to username and password disclosure were in

fact false positives (in all cases the user-

name/information information returned is equal to the

one sent by the scanner).

Vulnerability Scanners Confirmed F. P.

XPath Injection VS1.1 & VS1.2 10 0

Code Execution VS1.1 & VS1.2 1 0

Buffer Overflow VS3 1 3

Username/Password Discl. VS3 0 47

Server Path Disclosure VS3 16 1

Table 2. False positives.

Figure 4 presents the SQL Injection vulnerabilities

intersections after removing the false positives. The

doubtful situations were in this case considered as ex-

isting vulnerabilities (i.e., optimistic assumption from

the point of view of scanners detection effectiveness).

Results clearly show that, even if we manually remove

the false positives, the four scanners still report differ-

ent vulnerabilities. An interesting result is that three

vulnerabilities were detected by VS1.1 and were not

detected VS1.2 (the newer version of the scanner). The

reverse also happens for 15 vulnerabilities, which is

expectable as a newer version is expected to detected

more vulnerabilities than an older one (but that should

happen without missing any of the vulnerabilities iden-

tified by the older version, which was not the case).

This results called our attention and we tried to identify

the reasons. After analyzing the detailed results we

concluded that all of these 18 vulnerabilities are in the

group of the doubtful ones (maybe they are really false

positives, but we were not able to demonstrate that),

preventing us from drawing a definitive conclusion.

3.3. Coverage analysis

A key aspect is to understand the coverage of the

vulnerabilities detected. Coverage compares the num-

ber of vulnerabilities detected against the total number

of vulnerabilities. Obviously, in our case it is impossi-

ble to know how many vulnerabilities were not dis-

closed by any of the scanners (we do not have access to

the source code). Thus, it is not possible to calculate

the coverage. However, it is still possible to make a

relative comparison based on the data available.

In practice, we know the total number of vulner-

abilities detected (which correspond to the union of the

vulnerabilities detected by the four scanners after re-

moving the false positives) and the number of vulner-

abilities detected by each individual scanner. Based on

this information it is possible to get an optimistic cov-

erage indicator for each scanner (i.e., the real coverage

will be lower than the value presented). Obviously, this

is relevant only for SQL Injection vulnerabilities as it

is the only type that is detected by all the scanners.

Table 3 presents the coverage results. As shown,

149 different SQL Injection vulnerabilities were de-

tected (as before, we decided to include the doubtful

situations as existing vulnerabilities). Each scanner

detected a subgroup of these vulnerabilities, resulting

in partial detection coverage. VS1.1 and VS1.2 present

quite good results. On the other hand, the coverage of

VS2 and VS3 is very low.

Scanner # SQL Injection Vuln. Coverage %

VS1.1 130 87.2%

VS1.2 142 95.3%

VS2 25 16.8%

VS3 26 17.4%

Total 149 100.0%

Table 3. Coverage for SQL Injection.

3.4. Lessons learned

The results presented before allowed us to observe

some interesting aspects. The first observation is that

different scanners detected different types of faults.

SQL Injection was the only type that was detected by

all scanners. The two scanners of the same brand

(VS1.1 and VS1.2) were the only ones that detected

XPath and code execution vulnerabilities. Only one

scanner (VS3) detected vulnerabilities related to buffer

overflow, username and password disclosure, and
Figure 4. SQL Injection vulnerabilities without FP.

 - 7 -

server path disclosure. VS2 only detected SQL Injec-

tion vulnerabilities.

SQL Injection vulnerabilities are the dominant type

in the web services tested (see Figure 5). However,

different scanners detected different vulnerabilities of

this type. In fact, VS1.1 and VS1.2 detected a huge

number of vulnerabilities (215 and 225 respectively)

while VS2 and VS3 detected a very low number (25

and 35 respectively).

A key observation was a very large number of false

positives. In fact, for three of the scanners the percent-

age of false positives was more than 25%. VS2 pre-

sented zero false positives, but 8 out of the 25 SQL

Injection vulnerabilities detected by this scanner re-

mained as doubtful (i.e., could not be manually con-

firmed as real vulnerabilities nor as false positives).

A very low coverage, lower than 18%, was ob-

served for two of the scanners (VS2 and VS3), while

the other two scanners (VS1.1 and VS1.2) present a

coverage superior to 87%. Note that this value repre-

sents an optimistic coverage, as the real coverage of

the tested scanners (at least for the 300 web services

used in the experiments) is definitely lower than the

value observed.

Figure 5 presents the final distribution of vulner-

abilities per type, after removing the confirmed false

positives but including the doubtful cases (i.e., optimis-

tic evaluation of the scanners). As the doubtful cases

only affect the SQL Injection, it means that the number

of SQL injection vulnerabilities could be overesti-

mated. Scanners have found 177 different vulnerabili-

ties in 25 different services, which represent approxi-

mately 8.33% of the tested services. As mentioned

before, the predominant vulnerability is SQL Injection,

representing 84.18% of the vulnerabilities found. This is

a very important observation due to the high number of

cases found and the high severity of this vulnerability.

Figure 5. Vulnerabilities distributed per type.

4. Conclusions

In this paper we presented an experimental study on

using four commercial vulnerability scanners to detect

security vulnerabilities in 300 publicly available web

services, covering a diversity of technologies used to

implement the web services and including services

used in real business. A large number of vulnerabilities

was observed, confirming that many services are de-

ployed without proper security testing.

Results showed that selecting a vulnerability scan-

ner for web services is a very difficult task. First, dif-

ferent scanners detect different types of vulnerabilities.

Second, the number of false positives is quite high,

which reduces the confidence on the precision of the

vulnerabilities detected. Finally, the coverage is in

some cases very low, suggesting that many vulnerabili-

ties probably remain undetected. A final observation is

that SQL Injection vulnerabilities are prevalent in the

web services tested as they represent more than 84% of

all vulnerabilities detected.

Future research include new experiments covering

web service functionalities that require authentication,

performed over a selected set of representative web

services to which it is possible to get access rights un-

der agreement with owners.

References

[1] D. A. Chappel, T. Jewell, “Java Web Services: Using

Java in Service-Oriented Architectures”, O'Reilly. 2002

[2] E. Christensen et al., “Web Services Description Lan-

guage (WSDL) 1.1”. 2001, W3C

[3] Stock, A., Williams, J., Wichers, D., “OWASP top 10”,

OWASP Foundation, July, 2007

[4] Stuttard, D., Pinto, M., “The Web Application Hacker's

Handbook: Discovering and Exploiting Security Flaws”,

Wiley, ISBN-10: 0470170778, October 2007

[5] FORTIFY - http://www.fortifysoftware.com/

[6] Ounce, http://www.ouncelabs.com/

[7] Pixy, http://pixybox.seclab.tuwien.ac.at/pixy/

[8] Acunetix Web Vulnerability Scanner, 2008,

http://www.acunetix.com/vulnerability-scanner/

[9] IBM Rational AppScan, 2008, http://www-

01.ibm.com/software/awdtools/appscan/

[10] HP WebInspect, 2008, http://www.hp.com

[11] Foundstone WSDigger, 2008, http://www.

foundstone.com/us/resources/proddesc/wsdigger.htm

[12] wsfuzzer, 2008, http://www.neurofuzz.com/

modules/software/wsfuzzer.php

[13] Fonseca, J., Vieira, M., Madeira, H., "Testing and com-

paring web vulnerability scanning tools for SQL injec-

tion and XSS attacks", 13th IEEE Pacific Rim Depend-

able Computing Conference (PRDC 2007), Melbourne,

Victoria, Australia, December 2007

[14] Antunes, N., Vieira, M., Madeira, H., “Web Services

Vulnerabilities”, 2008, http://eden.dei.uc.pt/~mvieira

[15] Web Application Security Consortium, 2008,

http://www.webappsec.org/projects/threat/classes_of_att

ack.shtml

