
1

Júlio Cezar Estrella – jcezar@icmc.usp.br

Marco Vieira - mvieira@dei.uc.pt
Kalinka R. L. J. C Branco – kalinka@icmc.usp.br IC

M
C

-U
S

P
an

d
U

ni
v.

 o
f C

oi
m

br
a

Security in Web Services
State-of-the-art and Research
Opportunities

2

Web Services

  Strategic component in a wide range of
organizations

  Components that can be remotely invoked
  Well defined interface

  Dynamic, evolving, and supported by
unreliable networks

  Deployment implies complex SW infrastructure

  Must be:
  Robust, Secure, Reliable, Available, …

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

2

3

Goal

  Enable interoperability

  Widespread adoption, ubiquity

  Enable (Internet scale) dynamic binding

  Efficiently support both open (Web) and more
constrained environments

  Based on standards

  Focuses on messages and documents
  Not on APIs

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

4

Web Services Framework

  What goes “on the wire”
  Formats and protocols (e.g., html)

  What describes what goes on the wire
  Description languages

  What allows us to find these descriptions
  Discovery of services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

3

5

Web Services Description Language

  Interface Description Language (IDL)

  Provides functional description of network
services

  Platform independent description

  Extensible language

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

6

UDDI

  Universal Description, Discovery and
Integration

  Defines the operation of a service registry

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

4

7

Outline

  Part #1: Computer Security

  Part #2: Security in Web Services

  Part #3: Security in Web Services Code

  Part #4: Open Discussion

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

8

Computer Security

  Security became an indispensable requirement
for computer systems, ensuring that access
and information sharing occur without
damaging the operating system and that its
information will not be exposed to malicious
users

  Security can be understood as a quality of
service to ensure the provision of service and
prevent violations in the systems

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

5

9

Computer Security

  Main security properties:
  Confidentiality: ensures that information will be

disclosed only to authorized users.
  Integrity: ensures that information can not be

changed, accidentally or intentionally, for users who do
not have this right.

  Authenticity: it ensures that the user is
communicating is really who he claims to be.

  Non-repudiation: ensures that the user can not deny
his involvement in the occurrence of a transaction or
event.

  Availability: ensures that legitimate users have access
to information and resources and this can not be
denied access a maliciously.

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

10

Computer Security

  Security at Network Layer
  IPSec Protocol: The standard method for providing

privacy, integrity and authenticity of information
transferred across IP networks

  IPSec is an extension of the IP protocol that aims to be
the standard method for providing user privacy

  IPSec combines several different technologies such as:
 Mechanism for key exchange Diffie-Hellman

 Public-key cryptography to sign the exchange of Diffie-
Hellman key to ensure the identity of both parties and
prevent attacks like man-in-the-middle

  Encryption algorithms for large volumes of data, such as DES
(Data Encryption Standard)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

6

11

Computer Security

  Security at Transport Layer
  The transport layer has specific security technologies,

which are very useful for ensuring the security of the
communication into layers below of the application
layer.

  The most used of these technologies is the SSL (Secure
Sockets Layer)
  Developed by Netscape to ensure confidentiality and

authentication in HTTP (Hypertext Transfer Protocol)
interactions, so that the algorithms used in these processes
are negotiated between the two participants of the
communication

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

12

Computer Security

  Security at Transport Layer
  Technologies such as SSL are designed to provide

point-to-point security, where at each step the
message is decrypted and a new SSL connection is
created, not ensuring the end-to-end security.

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

7

13

Computer Security

  Security at Application Layer
  Every layer of communication has its own unique

security challenges. The application layer
communication is a very weak link in terms of security
because that the application layer supports many
protocols which provide many vulnerabilities and
access points for attackers

  All this variability makes application-layer attacks very
hard to defend against

  Application-layer attacks are very attractive to a
potential attacker because the information they seek
ultimately resides within the application itself

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

14

Computer Security

  The main categories of risks at the application
level are as follows:
  Web Security: Balance between security and

accessibility
  Email Security
  Password Attack
  Information Sniffing
  DNS Attack
  Instant Message Security
  SNMP Attack
  Operating Systems Risk

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

8

15

Web Application Vulnerabilities

  Main vulnerabilities:
  Denial of Service Attacks

  Oversize Payload, Coercive Parsing, Oversize Cryptography,
Attack Obfuscation, Unvalidated Redirects and Forwards

  Brute Force Attacks
  Insecure Cryptographic Storage, Broken Authentication and

Session Management

  Spoofing Attacks
  SOAPAction, WSDL Scanning, Insufficient Transport Layer

Protection, WS-Spoofing, Workflow Engine Hijacking, Metadata
Spoofing, Security misconfiguration

  Flooding and Injection Attacks
  Instantiation Flood, Indirect Flooding, BPEL State Deviation,

XML Injection, SQL Injection, Cross site Scripting (XSS), Cross
Site Request Forgery

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

16

Web Application Vulnerabilities

  Denial of Service Attacks
  Oversized Payload

  How it works?
  This attacks target at eliminating a service availability exhausting

the resources of the service (memory, process and network) and
it could be done using a very large request message (Jensen et
al, 2007). When we use SOAP message it is completely read,
parsed and transformed into a memory object.

  Countermeasures
  To avoid this kind of attack the countermeasure used is to

implement restrictions in XML infoset or just check the size of the
message and drop the messages that pass the established
threshold

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

9

17

Oversize Payload

<Envelope>

 <Body>

 <getArrayLength>

 <item>x</item>

 <item>x</item>

 <item>x</item>

 ...

 </getArrayLength>

 </Body>

</Envelope>

18

Web Application Vulnerabilities

  Denial of Service Attacks
  Coercive Parsing

  How it works?
  Parsing the SOAP message is necessary in the Web Service

request process. This becomes vulnerability when we can use a
large number of namespace. The attackers can explore this
vulnerability to provide a Denial of Service because the massively
reduced of the service availability because the attack uses a
continuous sequence of opening tags providing complex and
nested XML documents

  Countermeasures
  This kind of attack is difficult to be preventing because the XML

not limit the number of namespace declaration (Jensen et al,
2007);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

10

19

Coersive Parsing

<x>

 <x>

 <x>

 ...

20

Web Application Vulnerabilities

  Denial of Service Attacks
  Oversize Cryptography

  How it works?
  The ws-security protocol provide some types of security to a SOA

application. However, the flexibility allowed by this protocol that
could use cryptography in the header and in the body of a SOAP
message. The use of non controlled cryptography could became
a problem and the use of ws-security could provide this problem.
The attackers use an encrypted key chain where each key is
necessary to decrypt the next block

  Countermeasures
  To fend this attack is suggested that the usage of WS-Security

elements must be restricted and the approach is accept only the
security elements explicitly required by the security policy using
the WS-SecurityPolice protocol (Jensen et al, 2007; Lindstrom,
2004);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

11

21

Oversized Cryptography

  Chain encrypted key
  Each encrypted key is used encrypt the next key

  target system is forced to decrypt every encrypted key

Need buffer every key
Cause - memory

consumption

Decryption Operation
Cause a highly CPU
Consumption (main
using Asymmetric

algorithms)

22

Web Application Vulnerabilities

  Denial of Service Attacks
  Attack Obfuscation

  How it works?
  As Oversize Cryptography attack, this attack occurs because of

the WS-Security vulnerabilities. In this attack explore the
confidentiality of unreliable data. The encrypt process could mask
the massage and can obfuscated an Oversize Payload or other
kind of attack in the cryptography body message. This became a
hard to detect kind of attack

  Countermeasures
  As countermeasure against obfuscation attacks is interesting

perform message validation on decrypted content (Lai et. al,
2008; Jensen et al, 2007);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

12

23

Attack Obfuscation

  A single SOAP message was sent to the
server.
  message containing an encrypted and signed body - 1

MB
  Cause - full CPU load for 23 seconds and out-of-memory

execution

  unencrypted messages - 20 MB
  Processed in one second.

Can also hide
an Oversize

Payload attack

24

Web Application Vulnerabilities

  Denial of Service Attacks
  Unvalidated Redirects and Forwards

  How it works?
  This kind of vulnerability, unvalidated redirects, is related with

the phishing or malware sites that could result in a Denial of
Service attack or a unauthorized access to the client resources.
The attackers use this vulnerability to redirect clients (victims) to
unauthorized pages.

  Countermeasures
  Disabling the redirects and forwards (OWASP,2010).

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

13

25

Web Application Vulnerabilities

  Brute Force Attacks
  Insecure Cryptographic Storage

  How it works?
  Currently, it is present so plentiful, since communication

protocols, ATM, software protection until in digital TV.
Unfortunately, the deployment of cryptographic mechanisms
requires different care, which often is not observed, and
compromise the security of the solution. It is usual find systems
that are only concerned with protecting information in transit and
that ignore to protect them during storage. In this case,
vulnerability in the server may be sufficient to recover the
information

  Countermeasures
  Information should be classified and coded, especially those who

need to satisfy the requirement of confidentiality; avoid storing
keys and manage them appropriately; use good cryptographic
algorithms and already verified (PCI, 2009; Knudsen, 2005;
Pramstaller et al., 2005; OWASP, 2010)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

26

Insecure Cryptographic Storage

#include <stdio.h>
int main() {
char key[] =
"0a3bc178940fd43047027cda807409af"
;

...
printf(“encrypting data. Wait...
\n");

...
}

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

Execute strings
command in binary file
(Linux command) and

the key is there

14

27

Web Application Vulnerabilities

  Brute Force Attacks
  Broken Authentication and Session Management

  How it works?
  Vulnerabilities in the process of authentication and session

management allow illegitimate access to the application, either
by providing valid credentials of another user, or the hijacking of
a session already in progress. The problem becomes much more
critical if the compromised account has administrative privileges.
Many web applications submit credentials to access under the
protocol HTTP, without any protection

  Countermeasures
  It is necessary predefined application and platforms that support

it, such as: databases; web servers; operating systems;
application implement strong password policies that consider
minimum size complexity; periodic exchange; historical and
multiple attempts by catching invalid authentication and;
disconnect applications always disable the user session (OWASP,
2010).

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

28

Web Application Vulnerabilities

  Spoofing Attacks
  SOAPAction

  How it works?
  The use of HTTP header does not require XML processing, so,

the SOAPAction field in HTTP header is used as an service
operation identification. This enable the attack knows as main-in-
the-middle. This attack is possible because it allows put different
values in the header and in the body of a SOAP message.
Another attack allowed by the SOAPAction vulnerability is the
spoofing attack that is executed by the Web Service client and
tries to bypass an HTTP gateway (Mashood & Wikramanayake,
2007; Jensen et al, 2007);

  Countermeasures
  Determine the operation by the SOAP body content could be a

good countermeasure for this kind of attack.

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

15

29

SOAPAction Spoofing

POST /Service.asmx HTTP/1.1

...

SOAPAction: "op2"

<Envelope>

 <Body>

 <op1>

 <s>Hello</s>

 </op1>

 </Body>

</Envelope>

30

SOAPAction Spoofing

POST /axis2/testService HTTP/1.1

...

SOAPAction: "visible"

<Envelope>

 <Body>

 <hidden />

 </Body>

</Envelope>

Two Operation :
hiden and visible

Ignore the
SOAPAction value

16

31

Web Application Vulnerabilities

  Spoofing Attacks
  WSDL Scanning

  How it works?
  This class of attack provides a scanning in all the operations

generated in WSDL. Once this document is open an external
client could know all the internal operations and can invoke them

  Countermeasures
  To avoid this kind of attack is to provide a separate access WSDL

to external clients that contain the external operations only, so
the malicious user could try to guess the omitted operations and
call them (Jensen et al, 2007);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

32

WSDL Scanning

  Operation offered by Web Service
  (SendOrder) and (adminOrders)

Attackers could easyly find
all the methods

17

33

Web Application Vulnerabilities

  Spoofing Attacks
  Insufficient Transport Layer Protection

  How it works?
  The use of SSL/TLS exposes the communication traffic. The most

applications often fail to encrypt network traffic. Usually, they use
SSL/TLS during authentication, but not elsewhere, exposing all
transmitted data and session IDs to interception. This
vulnerability allows a main-in-the-middle attack and the use of
confidential information

  Countermeasures
  To fend against this attack is configure SSL/TLS to the entire site

(OWASP, 2010).

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

34

Web Application Vulnerabilities

  Spoofing Attacks
  WS-Spoofing

  How it works?
  This attack makes BPEL perform a full process and a complete

rollback. Using WS-addressing for asynchronous Web Service a
malicious user could use an arbitrary invalid endpoint URL as
callback endpoint reference providing a workload problem and
CPU consumption. Used as a flooding attack, this will cause
heavy load on the BPEL engine.

  Countermeasures
  As a countermeasure the system could use a secure way to

validate the caller endpoint (Jensen et al, 2007);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

18

35

WS-Addressing Spoofing

  The use of WS-Addressing for asynchronous
Web Service calls raises a lot of attack
possibilities, which all have in common that
they use modified callback endpoint
references.

36

Web Application Vulnerabilities

  Spoofing Attacks
  Workflow Engine Hijacking

  How it works?
  This kind of attack uses the WS-Addressing but with the

attackers point to the target system URL. So the target system
(the Web Service) receives a heavy amount of requests,
providing a Denial of Service.

  Countermeasures
  As a countermeasure the system could use a secure way to

validate the caller endpoint (Jensen et al, 2007);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

19

37

Workflow Engine Hijacking

  This attack uses WS-Addressing spoofing
again, but it points the attacker’s endpoint
URL to an existing target system, running a
real service at the URL specified

38

Web Application Vulnerabilities

  Spoofing Attacks
  Metadata Spoofing

  How it works?
  All the information in a Web Service application is exchanged in

metadata. This metadata is exchanged using HTTP protocol
allowing spoofing these metadata. The WSDL spoofing and
Security Policy Spoofing is the most representative attacks of this
class. In the first one the problem is the modification of the
network endpoints (allowing the main-in-the-middle attack) and
in the second the security policy could be changed

  Countermeasures
  As a countermeasure all the metadata contents could be carefully

checked for authenticity (despite the mechanisms for securing
metadata are not standardized) (Lai et. al, 2008; Jensen et al,
2007; Lindstrom, 2004);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

20

39

Metadata Spoofing

  Supposably most promising for WSDL
Spoofing is the modification of the network
endpoints and the references to security
policies. A modified endpoint enables the
attacker to easily establish a man-in-the-
middle attack for eavesdropping or data
modification.

40

Web Application Vulnerabilities

  Spoofing Attacks
  Security Misconfiguration

  How it works?
  Security depends on having a secure configuration defined for

the application and the entire web service platform. All the stack
application and web service platform must have a secure
configuration. This vulnerability allows an attacker, using an
automated scanner, detect missing patches and use default
account and hijacking the target system.

  Countermeasures
  To fend the system against this kind of attack strong network

architecture must be provide. This architecture must provide
good separation and security between components. Automatic
and periodic scanning must be performed to help detect future
misconfigurations or missing patches (OWASP, 2010);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

21

41

Web Application Vulnerabilities

  Flooding and Injection Attacks
  Instantiation Flood

  How it works?
  BPEL start process when a new message arrives and creates an

instance. The process immediately stars its execution based on
the description instruction. This allows a kind of attack that
creates new process and starts its execution, what improve the
load of the engine.

  Countermeasures
  Fending such flooding attacks can only be achieved by

identification and rejection of semantically invalid requests of
semantically invalid requests. This kind of attack is consider a
non trivial avoid class because is really difficult to identify an
invalid message (Jensen et al, 2007; Lindstrom, 2004);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

42

Web Application Vulnerabilities

  Flooding and Injection Attacks
  Indirect Flooding

  How it works?
  This attack uses BPEL like an intermediate to provide a flooding

attack in the target system making a lot of requests (calls). In
this case, the BPEL engine will undergo a heavy load itself, but it
merely will cause an equally heavy load on the target system

  Countermeasures
  This kind of attack could not be fended using WS-Security once

the connection between the target system and BPEL is a trustful
connection (Lai et. al, 2008; Jensen et al, 2007; Lindstrom, 2004)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

22

43

Indirect Flooding

  The idea of this attack is to use the BPEL
engine as intermediate for an attack on a
target system behind the BPEL engine.

44

Web Application Vulnerabilities

  Flooding and Injection Attacks
  BPEL State Deviation

  How it works?
  BPEL provides, with its vulnerability, this kind of attack. BPEL

start endpoints communication. This attack provide a redundant
work because service endpoints using messages that are correct
regarding their message structure but not properly correlated to
any existing process will be discarded within the BPEL. This cause
a heavy amount of load provided by the many ports that could be
request.

  Countermeasures
  Use specific firewall that could fend both correlation-invalid and

state-invalid messages

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

23

45

BPEL State Deviation

  Suppose a BPEL engine running one BPEL
process.
  sequence of two receive activities: first and
second, with only first initiating a new process
instance.

  The attack used SOAP messages invoking
operation second and

containing correlation properties that did not
match to any running process instance.

  sequence of 1000 messages (0.5 MB) - the messages are
discarded

Cause – Memory consumption
and full CPU use

46

Web Application Vulnerabilities

  Flooding and Injection Attacks
  XML Injection

  How it works?
  A XML Injection attack class intends modify the XML structure of

a SOAP message by inserting new XML fragment containing XML
tags, This situation may lead to unauthorized access to the
protected resources.

  Countermeasures
  A countermeasure is try to provide a strict schema validation on

the SOAP message aiming discover a invalid data type or
message and reject them (Jensen et al, 2007; Knap & Mlýnková,
2009);

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

24

47

XML Injection

<Envelope>

 <Body>

 <HelloWorld>

 <a> 1

 2

 </HelloWorld>

 </Body>

</Envelope>

48

Web Application Vulnerabilities

  Flooding and Injection Attacks
  SQL Injection

  How it works?
  SQL injection is the most common vulnerability in web

applications nowadays (OWASP, 2010). This attack consists in
the injection of a SQL code and parameters in the fields and
application with the aim of which is performed on the data layer.
In the simplest attacks, you can perform any operation on the
database, limited to the privileges of the account that performs
the access

  Countermeasures
  To prevent web applications vulnerable to SQL injection attacks

has been to consider all information provided by users as
malicious. Then, before processing it, check whether they agree
with known values as valid

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

25

49

SQL Injection

sComando = "select * from user_data

 where last_name = '" +

 inputLastName + "'“

So...

select * from user_data

where last_name = '' or 1=1; --'

50

SQL Injection

26

51

Web Application Vulnerabilities

  Flooding and Injection Attacks
  Cross Site Scripting (XSS)

  How it works?
  Also known as XSS, is the flaw most commonly found in web

applications. This attack allows using a vulnerable application to
carry malicious code, usually written in Javascript by the browser
of another user. Given the relationship of trust established
between the browser and server, that means that the code
received is legitimate and therefore allows sensitive information
such as the session identifier of the user. With this, a malicious
user can hijack the session of the person attacked (OWASP,
2010; Uto & Melo, 2009; Stuttard and Pinto, 2007, Howard et al.,
2005; Fogie et al., 2007)

  Countermeasures
  A countermeasure is satisfied when all information provided by

users is considered malicious, and thus before processing it,
make sure it complies with valid values for the field or parameter

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

52

Cross Site Scripting (XSS)

http://localhost:8080/WebGoat/attack?
Screen=33&menu=900&search_name=X<scri
pt>alert(%22XSS%20Refletido%22)</
script>&action=FindProfile

27

53

Web Application Vulnerabilities

  Flooding and Injection Attacks
  Cross Site Request Forgery

  How it works?
  CSRF is an attack that takes advantage of a user session already

established in the vulnerable application to perform automated
actions without the knowledge and consent of the victim.
Examples of operations that can be performed range from simple
closure of the session until the transfer of funds in a banking
application. This attack is also known as XSRF, Session Riding
and One-Click attack.

  Countermeasures
  The main countermeasure against CSRF attacks is to use

information related to each session in the URLs and check them
when a request is made. This prevents one knows in advance the
format of the URL, it is necessary to mount the attack. (Uto &
Melo, 2009; Stuttard and Pinto, 2007, Howard et al., 2005; Fogie
et al., 2007).

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

54

Cross Site Request Forgery

www.aplic.co
m

Session identification (SID)

User + password

Attacker

Action “15“ Successfully executed!!

Click Here

Victim

SID + http://www.aplic.com/proc.js?action=15

28

55

Questions?

56

Security in Web Services
Protocols and Mechanisms

29

57

Security in Web Services

  For Web services to be widely adopted it is
essential that their use is safe, since no
company wants to risk exposing their
applications and business flows with no
damage

  For this reason, organizations as W3C, OASIS
and WS-I are proposing specifications in order
to make these services more secure

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

58

Security in Web Services

  Some specifications to deal with security in
Web Services:
  XML Encryption
  XML Signature
  WS-Security
  WS-Policy
  WS-Security Policy

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

30

59

XML Encryption

  Defines a way to encrypt data and represents
the result in a structured way as an XML
document, ensuring the confidentiality
requirement

  Provides security end-to-end for applications
that need to exchange data in XML format in a
secure way, without concern that they can
have their contents revealed and misused by
third parties

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

60

XML Encryption

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

31

61

XML Signature

  Specifies a process for generating and
validating digital signatures expressed in XML,
ensuring the integrity and authenticity in XML
documents

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

62

WS-Security

  Proposes a set of extensions to SOAP
messages in order to implement secure Web
services

  Provides ways of encryption and digital
signature in a SOAP messages using XML
Encryption and XML Signature, besides to
include security credentials

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

32

63

WS-Security

  The purpose is to ensure security end-to-end
in message-level with regard to three main
points (Chou and Yurov, 2005):
  Confidentiality of the message
  Message integrity
  Credentials Security

  Security credentials are defined in WS-Security and access
mechanisms and methods used for authentication and
authorization (passwords, X.509 Certificate)

  The main security credentials are (Mogollon, 2008):
  UsernameToken
  BinarySecureToken
  XML Tokens

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

64

WS-Security

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

33

65

WS-Policy

  Provides a model for the description of general
purpose policies

  It has a flexible and extensible grammar that
allows you to specify requirements and
abilities to the environment of Web services

  A service provider sets its policy to determine
the conditions that must be met for your
service to be provided to a client.

  Thus, after reviewing the policy, a potential
client is able to decide whether or not to
access the service

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

66

WS-Policy

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

34

67

WS-Security Policy

  Extension of WS-Policy

  Provides policy assertions related to security
that can be used with WS-Policy

  Through these assertions can be specified the
requirements, capabilities and limitations of an
implementation of Secure Web services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

68

WS-Security Policy

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

35

69

Other Security Specifications for WS

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

70

Other Security Specifications for WS

  WS-Trust
  Standard of OASIS (OASIS, 2007a) that defines how

trust relationships are established, allowing Web
services interoperate safely.

  WS-Secure Conversation
  OASIS standard (OASIS, 2007b) which provides

mechanisms for establishing and identifying a security
context, i.e., it allows the creation of sessions where
several SOAP messages can be exchanged without the
need to assess the authentication and authorization for
each (Holgersson and Soderstrom, 2005).

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

36

71

Other Security Specifications for WS

  WS-Privacy
  Proposal not yet standardized that aims to

communicate the privacy policies set by organizations
that are deploying Web services (Nordbotten, 2009).

  WS-Federation
  Aims to describe how to manage and broker the trust

relationship in a heterogeneous federated environment
including support for federated identities. Proposal in
progress by OASIS (OASIS, 2008)

  WS-Authorization:
  proposal not yet standard that aims to describe how

access policies for a Web service are specified and
managed (Nordbotten, 2009).

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

72

Questions?

37

73

Security in Web Services
Code
Principles

74

Outline revisited

  What are code vulnerabilities?

  Vulnerabilities detection approaches
 and tools

  Vulnerabilities in public Web Services

  How effective are vulnerability detection tools?

  Can we do better?

  Research challenges and opportunities

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

38

75

What is a vulnerability?

  A vulnerability is a weakness that may allow
attackers to gain access to the system or info
  [Stock07]

  There are many causes:
  Complexity
  Password and privileges management flaws
  Operating system design flaws
  Software bugs
  Unchecked user input
  …

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

76

Vulnerabilities in Web Applications (1)

  SQL Injection
  It is possible to alter the construction of backend SQL

statements
  An attacker can read or modify database data and
  In some cases, execute database administration

operations or commands in the system

  XPath Injection
  It is possible to modify an XPath query to be parsed in

a way differing from the programmer's intention
  Attackers may gain access to information in XML

documents

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

39

77

Vulnerabilities in Web Applications (2)

  Code Execution
  It is possible to manipulate the application inputs to

trigger server-side code execution
  An attacker can exploit this vulnerability to execute

malicious code in the server machine

  Buffer Overflow
  It is possible to manipulate inputs in such a way that

causes buffer allocation problems
  Including overwriting of parts of the memory

  An attacker can exploit this causing Denial of Service
  Or, in worst cases, alter application flow and force unintended

actions

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

78

Vulnerabilities in Web Applications (3)

  Username/Password Disclosure
  A response contains information related to usernames

and/or passwords
  An attacker can use this information to get access to

private data

  Server Path Disclosure
  A response contains a fully qualified path name to the

root of the server storage system
  An attacker can use this info to discover the server file

system structure and devise other security attacks

  …

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

40

79

Examples of SQL Injection vulnerability

public String auth(String login, String pass)
 throw SQLException {
 String sql = "SELECT * FROM users WHERE "+
 "username='" + login + "' AND "+
 "password='" + pass + "'";

 ResultSet rs = statement.executeQuery(sql);
 (…)
}

public void delete(String str) throw SQLException{
 String sql = "DELETE FROM table
 "WHERE id='" + str + "'";
 statement.executeUpdate(sql);
}

' OR 1=1 --

"SELECT * FROM users WHERE username='' OR 1=1 -- ' AND
password=''“;

"DELETE FROM table WHERE id='' OR '' = ''";

' OR ''='

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

80

Questions?

41

81

Security in Web Services
Vulnerabilities detection approaches and tools

82

Are Web Services vulnerable?

  Web Services are widely exposed

  Any existing vulnerability will most probably be
uncovered/exploited

  Both providers and consumers need to assess
Web Services’ security

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

42

83

Web Services security

  Security threats
  Hackers are moving their focus to applications’ code
  Traditional security mechanisms (Firewall, IDS,

encryption) cannot mitigate these attacks

  Developers must
  Apply best coding practices
  Perform code analysis

  Manual code analyses (reviews, inspections)
  Automated static code analysis

  Do tests
  Manual penetration testing
  Automated penetration testing (vulnerability scanners)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

84

Penetration testing

  Widely used by developers

  Consists in stressing the application from the
point of view of an attacker
  “black-box” approach
  Uses specific malicious inputs

  e.g., for SQL Injection: ‘ or 1=1

  Can be performed manually or automatically

  Does not require access to the source code (or
bytecode)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

43

85

Penetration testing tools

  Provide an automatic way to search for
vulnerabilities

  Avoid the repetitive and tedious task of doing
hundreds or even thousands of tests by hand

  Many tools available
  Including commercial and open-source

  Different tools target different types of
vulnerabilities

  The effectiveness of penetration testing tools
is doubtful

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

86

Examples of penetration testing limitations

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

public void operation(String str) {
 try {
 String sql = "DELETE FROM table" +
 "WHERE id='" + str + "'";
 statement.executeUpdate(sql);
 } catch (SQLException se) {}
}

public String dumpDepositInfo(String str) {
 try {
 String path = "//DepositInfo/Deposit"+
 "[@accNum='" + str + "']";
 return csvFromPath(path);
 } catch (XPathException e) {}
 return null;
}

No return value and

exceptions related with SQL

mal-formation do not leak out

to the invocator

This lack of output

information

44

87

Examples of penetration testing tools

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

WSDigger

WSFuzzer

88

HP WebInspect (1)

  “Web application security testing and
assessment for complex web applications

  Built on emerging Web 2.0 technologies

  Fast scanning capabilities, broad security
assessment coverage

  Accurate web application security scanning
results”

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

45

89

HP WebInspect (2)

  Includes pioneering assessment technology
  Including simultaneous crawl and audit (SCA) and

concurrent application scanning

  Broad scanning capabilities
  Targets many different types of vulnerabilities

  Can be applied for penetration testing in web-
based applications
  Including Web Services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

90

IBM Rational AppScan

  “Is a leading suite of automated Web
application security and compliance
assessment tools

  Scan for common application vulnerabilities”

  Suitable for users ranging from non-security
experts to advanced users

  Supports extensions for customized scanning
environments

  Can be used for security testing in web
applications, including Web Services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

46

91

Acunetix Web Vulnerability Scanner

  “Is an automated web application security
testing tool

  Audits your web applications by checking for
exploitable hacking vulnerabilities”

  Broad scanning capabilities
  Targets many different types of vulnerabilities

  Can be applied for security testing in web
applications in general
  Including Web Services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

92

Static code analysis

  “white-box” approach

  Consists in analyzing the source code of the
application
  Without execution it

  Looks for potential vulnerabilities
  Among other types of software defects

  Can be performed manually or automatically

  Does require access to the source code (or
bytecode)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

47

93

Static code analysis tools

  Analyze the code without actually executing it

  The analysis varies depending on the tool
sophistication
  Ranging from tools that consider only individual

statements and declarations
  To others that consider the complete code

  Have other usages
  e.g., model checking and data flow analysis

  These tools provide an automatic way for
highlighting possible coding errors

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

94

Examples of static analysis limitations

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

public void operation(String str) {
 int i = Integer.parseInt(str);
 try {
 String sql = "DELETE FROM table" +
 "WHERE id='" + str + "'";
 statement.executeUpdate(sql);
 } catch (SQLException se) {}
}

public String dumpDepositInfo(String str) {
 try {
 String path = "//DepositInfo/Deposit"+
 "[@accNum='" + str + "']";
 return csvFromPath(path);
 } catch (XPathException e) {}
 return null;
}

Analyzers identify the

vulnerability because the SQL

query is a non-constant

string

Depending on the

complexity of

csvFromPath method A

static analysis tool may

not be able to find the

vulnerability

48

95

Examples of static analysis tools

  FindBugs

  Yasca (Yet Another Source Code Analyzer)

  IntelliJ IDEA

  …

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

96

FindBugs

  “A program which uses static analysis to look
for bugs in Java code”

  It is able to scan the bytecode of Java
applications

  Detects, among other problems, security
issues

  It is one of the most used tools for static code
analysis

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

49

97

Yasca (Yet Another Source Code Analyzer)

  “A framework for conducting source code
analyses”

  Wide range of programming languages,
including java.

  Yasca includes two components:
  A framework for conducting source code analyses
  An implementation of that framework that allows

integration with other static code analyzers
  e.g., FindBugs, PMD, Jlint

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

98

IntelliJ IDEA

  A commercial tool that provides a powerful
IDE for Java development

  Includes “inspection gadgets” plug-ins with
automated code inspection functionalities

  IntelliJ IDEA is able to detect security issues in
java source code

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

50

99

Questions?

100

Security in Web Services
Vulnerabilities in public Web Services

51

101

Experimental study

  [Vieira09]

  Question: Are Web Services vulnerable?

  Apply leading commercial scanners in public
Web Services

  300 Web Services tested
  Randomly selected

  4 Scanners used
  Including two different versions of a brand

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

102

Experimental procedure

  Preparation
  Select services and scanners

  Execution
  Test the services using the scanners

  Verification
  Identify false positives

  Analysis
  Analysis and systematization of results

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

52

103

Scanners

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

104

Vulnerabilities Found

  SQL injection

  XPath Injection

  Code Execution

  Possible Parameter Based Buffer Overflow

  Possible Username or Password Disclosure

  Possible Server Path Disclosure

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

53

105

Vulnerability Types
VS1.1 VS1.2 VS2 VS3

Vuln. # WS # Vuln. # WS # Vuln. # WS # Vuln. # WS

SQL Injection 217 38 225 38 25 5 35 11

XPath Injection 10 1 10 1 0 0 0 0

Code Execution 1 1 1 1 0 0 0 0

Possible Parameter Based
Buffer Overflow

0 0 0 0 0 0 4 3

Possible Username or
Password Disclosure

0 0 0 0 0 0 47 3

Possible Server Path
Disclosure

0 0 0 0 0 0 17 5

Total 228 40 236 40 25 5 103 22

Overall results analysis

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

106

SQL Injection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.2

225

54

107

SQL Injection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1

VS1.2

198

19

27

108

SQL Injection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1

VS3
VS1.2

172

19

24

6

26

3

55

109

SQL Injection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1

VS2

VS3
VS1.2

171

19

24

5

21

5

2

1

1

3

110

SQL Injection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1

VS2

VS3
VS1.2

171

19

24

5

21

5

2

1

1

3

?

56

111

False positives examination

  False positive when
  The error/answer obtained is related to an application

robustness problem.
  The same problem occurs when the service is executed

with valid inputs

  Confirmed vulnerability when
  Is possible to observe that a SQL command was

invalidated by the “injected” values
  The “injected” values lead to exceptions raised by the

database server
  Is possible to access unauthorized resources

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

112

False positives results

116 116

17 21

14
26

8 5

87
83

9

0

25

50

75

100

125

150

175

200

225

VS1.1 VS1.2 VS2 VS3

False Positives

Doubtful

Confirmed Vulnerabilities

40% 37%

11,6% 6,5%

32%

25,7%

14%

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

57

113

SQL Injection without False Positives

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.2

142

114

SQL Injection without False Positives

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1

VS1.2

3

127

15

58

115

SQL Injection without False Positives

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1

VS3

VS1.2

24

3

103

15

2

116

SQL Injection without False Positives

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1
VS2

VS3

VS1.2

21

1 3

3

1
2

102

15

1

59

117

SQL Injection without False Positives

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

VS1.1
VS2

VS3

VS1.2

21

1 3

3

1
2

102

15

1

?

118

Coverage analysis

Scanner # SQL Injection Vulnerabilities Coverage %

VS1.1 130 87.2%

VS1.2 142 95.3%

VS2 25 16.8%

VS3 26 17.4%

Total 149 100%

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

  Real number of vulnerabilities unavailable
  It is possible to make a comparative analysis

  Overestimated Coverage values!!

60

119

Common vulnerabilities

149

16

10
1

1
SQL Injection (149)

Possible Server Path
Disclosure (16)

XPath Injection (10)

Code Execution (1)

Possible Parameter
Based Buffer Overflow
(1)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

120

Are Web Services secure?

  A large number of vulnerabilities was observed

  SQL Injection vulnerabilities are prevalent

  Selecting a scanner for Web Services seems to
be a very difficult task
  Different scanners detect different types of

vulnerabilities
  High false positives rates
  Low coverage rates

  How effective are vulnerabilities detection
tools?

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

61

121

Questions?

122

Security in Web Services
How effective are vulnerabilities detection tools?

62

123

Experimental study [Antunes09a]

  Evaluate several automatic penetration testing
tools and static analysis tools
  In a controlled environment

  Focus on two key measures of interest:
  Coverage

  Portrays the percentage of existing vulnerabilities that are
detected by a given tool

  False positives rate
  Represents the number of reported vulnerabilities that in fact

do not exist

  Target only SQL Injection vulnerabilities
  Extremely relevant in Web Services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

124

Steps

  Preparation
  Select the penetration testers and static code analyzers
  Select the Web Services to be considered

  Execution
  Use the tools to identify potential vulnerabilities

  Verification
  Perform manual verification to confirm that the

vulnerabilities identified by the tools do exist
  i.e., are not false positives

  Analysis
  Analyze the results obtained and systematize the

lessons learned
Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

63

125

Web Services tested

  Eight Web Services
  A total of 25 operations

  Four of the services are based on the TPC-App
performance benchmark

  Four other services have been adapted from
code publicly available on the Internet

  Implemented in Java and use a relational
database

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

126

Web Services characterization

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

64

127

Tools studied

  Penetration testing
  HP WebInspect
  IBM Rational AppScan
  Acunetix Web Vulnerability Scanner

  Static code analysis
  FindBugs
  Yasca
  IntelliJ IDEA

  Decided not to mention the brand of the tools
to assure neutrality
  VS1, VS2, VS3 (without any order in particular)
  SA1, SA2, SA3 (without any order in particular)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

128

Tools and environment configuration

  Penetration-testing
  Underlying database restored before each test

  This avoids the cumulative effect of previous tests
  Guarantees that all the tools started the service testing in a

consistent state

  If allowed by the testing tool, information about the
domain of each parameter was provided
  If the tool requires an exemplar invocation per operation, the

exemplar respected the input domains of operation
  All the tools in this situation used the same exemplar

  Static code analysis
  Configured to fully analyze the services code
  For the analyzers that use binary code, the

deployment-ready version was used
Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

65

129

Web Services manual inspection

  It is essential to correctly identify the
vulnerabilities that exist in the services code

  A team of experts was invited to review the
source code looking for vulnerabilities
  False positives were eliminated by cross-checking the

vulnerabilities identified by different people

  A key difficulty is that different tools report
(and count) vulnerabilities in different ways
  Penetration testing: a vulnerability for each vulnerable

parameter
  Static analysis: a vulnerability for each vulnerable line

in the service code
Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

130

Vulnerabilities found

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

66

131

Penetration testing results

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

132

Static code analysis results

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

67

133

Penetration testing vs Static analysis (1)

  Coverage

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

134

Penetration testing vs Static analysis (2)

  False positives

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

68

135

Key observations

  The coverage of static code analysis is
typically higher than of penetration testing

  False positives are a problem for both
approaches
  But have more impact in the case of static analysis;

  Different tools report different vulnerabilities in
the same piece of code
  Even tools implementing the same approach frequently

  Poor results!
  Can we do better?

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

136

Questions?

Juli

69

137

Security in Web Services
Can we do better?

138

Yes, we can! 

  [Antunes09a]
  Proposes a new penetration testing approach to detect

SQL Injection vulnerabilities in Web Services code

  [Antunes09b]
  Approach based on anomaly detection to find SQL/

XPath Injection vulnerabilities

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

70

139

[Antunes09a]

  New penetration testing approach to detect
SQL Injection vulnerabilities

  Main improvements:
  A representative workload to exercise the services and

understand the expected behavior
  A broader set of attacks
  Well defined rules to analyze the service's responses

  To improve coverage and remove false positives

  Completely automatic

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

140

Execution steps

1. Prepare the tests
1.1. Gather information about the Web Service’ operations,

call parameters, data types, and input domains
1.2. Generate the workload

2. Execute the tests
2.1. Execute the workload to understand the expected

behavior of the service in the absence of attacks
2.2. Perform the attacks to trigger faulty behaviors and

disclose SQL Injection vulnerabilities

3. Analyze the responses to detect and confirm
the vulnerabilities

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

71

141

Prepare the tests: Gather information

  Web Service interfaces are described as a
WSDL file

  This file is processed automatically to obtain:
  Operations
  Call parameters
  Data types

  The valid values for each parameter (i.e.,
input domains) have to be provided by the
user

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

142

Prepare the tests: generate the workload

  Two options:
  User-defined workload
  Random workload

  Random workload is generated automatically
  Generate test values for each input parameter
  Generate test calls for each operation
  Select test calls for each operation

  It may be unfeasible to use a workload based on all the test
calls generated (e.g., due to time constraints)

  It is up to the user to specify the size of this subset

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

72

143

Execute the tests: Configuration

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

144

Execute the tests: Type of attacks

  Examples:

  A total of 137 types
  The list can be continuously improved
  Just add new attack patterns to a configuration file

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

73

145

Execute the tests: Attacks generation

  Mutation of the workload test calls
  Valid values are replaced by malicious values

  Number of attacks can be extremely large, e.g.:
  3 operations with 5 parameters each
  A workload with 25 test calls per operation
  137 attack types  52500 attacks

  The tool allows specifying the number of test
calls to be used for the attack load generation
  The original test calls are ranked based on their ability to

help us detecting vulnerabilities
  e.g. test calls that that lead to valid Web Service responses (i.e.,

no error) are in the top of the list

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

146

Analyze the responses

  W
  Valid
 call

  A
  Attack
 call

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

74

147

Experimental evaluation

  Web Services tested
  262 public Web Services

  Four steps:
  Preparation: select a large set of Web Services.
  Execution: use the vulnerability scanners to scan the

services to identify potential vulnerabilities
  Verification: perform manual testing to confirm that the

vulnerabilities identified do exist
  Analysis: analyze the results and compare the

effectiveness of our tool to the commercial ones

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

148

Scanners

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

75

149

Raw results for public Web Services

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

150

After removing false positives…

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

76

151

Detection coverage

  Based on limited knowledge
  Probably we don’t know all the existing vulnerabilities

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

152

Can we do better?

  Results show that it is possible to achieve
much better results than commercial tools
  Concerning both coverage and false positives

  The tool was able to detect vulnerabilities that
were not detected by the commercial scanners
  And, at the same time, was able to eliminate most of

the false positives

  This shows that it is possible to improve the
state of the art in vulnerabilities detection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

77

153

Questions?

154

[Antunes09b]

  Approach based on anomaly detection to find
SQL/XPath Injection vulnerabilities

  Steps:
1. Instrument the web service to intercept all SQL/XPath

commands executed
2. Generate a workload
3. Execute the workload to learn SQL commands and

XPath queries issued
4. Generate an attackload based on a large set of SQL

Injection and XPath Injection attacks
5. Execute the attackload to detect vulnerabilities

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

78

155

Web Service instrumentation

  Based on Aspect-Oriented Programming (AOP)

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

156

Workload generation

1. Get relevant information from the WSDL file
  Operations, parameters, datatypes

2. Generate test values for each input parameter
  Random generation of a set of valid input values
  The number of test values is defined by the user

3. Generate test calls for each operation
  Generate a large set of calls for each operation
  Sum of all combinations of the test values generated

for all the parameters of each operation

4. Select test calls for each operation
  Defined by the user
  Determines the final size of the workload

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

79

157

SQL/XPath commands learning

1. Exercise the service by executing the workload

2. SQL and XPath commands are intercepted

3. Commands are parsed to remove the data
variant part (if any)

4. A hash code is used to identify each command

5. Each hash signature is associated with a source
code entry point

6. Workload coverage is analyzed
  If not satisfactory, then more calls should be performed

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

158

Attackload

  Includes parameter values that attempt to
perform SQL/XPath injection

  Attack types are based on the compilation of
the types used by a large set of scanners

  Complemented based on practical experience
and on information available in the literature

  Attackload generation:
  Generate a new workload
  Malicious values are selectively inserted by applying the

attack rules

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

80

159

Examples of attack types

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

160

Vulnerabilities detection

1. Execute the attackload and perform security
checks per each data access executed

2. SQL and XPath commands are intercepted and
hashed

3. The calculated hash codes are compared to
the values of the learned valid commands
  For the code point at which the command was

submitted

4. If hash code is NOT found then:
  There is a vulnerability
  The source code location was not learned correctly

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

81

161

Experimental evaluation

  Prototype tool to demonstrate the approach
  Availale at: http://eden.dei.uc.pt/~mvieira

  Experiments to assess its effectiveness
  Detecting vulnerabilities in a set of Java-based Web

Services coded by independent developers
  Comparison with existing scanners and code analyzers

  Two key metrics were considered:
  Detection coverage

  Percentage of existing vulnerabilities detected by the tool

  False positives rate
  Percentage of vulnerabilities detected by the tool but that do

not exist

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

162

Web Services tested

  Nine Web Services
  A total of 28 operations

  Four of the services are based on the TPC-App
performance benchmark

  Four other services have been adapted from
code publicly available on the Internet

  One service using XPath

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

82

163

Tools used

  Penetration testing
  HP WebInspect
  IBM Rational AppScan
  Acunetix Web Vulnerability Scanner
  VS.BB – [Antunes09]

  Static code analysis
  FindBugs
  Yasca
  IntelliJ IDEA

  Decided not to mention the brand of the tools
to assure neutrality

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

164

Vulnerabilities found by manual inspection

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

83

165

Comparing with penetration testing…

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

166

Intersections for penetration testing

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

84

167

Comparing with static code analysis…

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

168

Intersections for static code analysis

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

85

169

Questions?

170

Security in Web Services
Research challenges and opportunities

86

171

Challenges and opportunities (1)

  Fact: The effectiveness of vulnerability
detection tools is very low

  How to improve penetration testing?
  Increase representativeness of the workload
  Guarantee high coverage
  Improve the attacks performed
  Improve the vulnerability detection algorithms

  How to improve static analysis?
  Include new vulnerable code patterns

  How to identify those patterns?

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

172

Challenges and opportunities (2)

  Merge penetration testing and static code
analysis techniques?

  Fact: Web Services are typically deployed with
vulnerabilities

  How to improve the current situation?
  Better tools for vulnerability detection
  Approaches to automatically remove vulnerabilities

  What about attack detection?
  Can we include in the Web Services attack detection

mechanisms?

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

87

173

Challenges and opportunities (3)

  Improve the software development process?
  More effective testing?
  More effective code reviews and inspections?

  Use targeted checklists?

  How to take advantage of Web Services
diversity to change the current situation?

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

174

Questions?

88

175

Open Discussion
Your Time!

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

176

Key references (1)
  [Antunes09a] Antunes, N. and Vieira, M. , "Detecting SQL Injection Vulnerabilities in

Web Services", Fourth Latin-American Symposium on Dependable Computing (LADC
2009), João Pessoa, Paraíba, Brazil, September 2009.

  [Antunes09b] Antunes, N. and Laranjeiro, N. and Vieira, M. and Madeira, H. , "Effective
Detection of SQL/XPath Injection Vulnerabilities in Web Services", IEEE International
Conference on Services Computing (SCC 2009), Bangalore, India, September 2009.

  [Chou05]. D. C. Chou, K. Yurov. Security development in web services environment.
Computer Standards & Interfaces, v. 27, n. 3, p. 233–240, 2005.

  [Holgersson05] J. Holgersson, E. Soderstrom. Web service security - vulnerabilities and
threats within the context of ws-security. 2005, p. 138 – 146

  [Mogollon08] M. Mogollon. Cryptography and security services: Mechanisms and
applications. IGI Global, 2008.

  [Nordbotten09] N. A. Nordbotten. Xml and web services security standards. IEEE
Communications Surveys Tutorials, v. 11, n. 3, p. 4 –21, 2009

  [Oasis07a] Ws-trust 1.3. Available at: http://docs.oasis-open.org/ws-sx/ws-trust/
200512. Último acesso: 18/02/2010, 2007a.

  [Oasis07b] Ws-secureconversation 1.3. Available at: http://docs.oasis-open.org/ws-sx/
ws-secureconversation/v1.3/ws-secureconversation.html. Último acesso: 18/02/2010,
2007b.

 
Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

89

177

Key references (2)
  [Oasis08] Web services federation (wsfed) tc. Available at: http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wsfed. Último acesso: 18/02/2010, 2008.

  [Siblini05] Siblini, R., Mansour, N., “Testing Web Services”, The 3rd ACS/IEEE
International Conference on Computer Systems and Applications, 2005.

  [Stock07] Stock, A., Williams, J., Wichers, D., “OWASP top 10”, OWASP Foundation,
July, 2007.

  [Vieira09] Vieira, M. and Antunes, N. and Madeira, H. , "Using Web Security Scanners
to Detect Vulnerabilities in Web Services", 39th Annual IEEE/IFIP Intl. Conference on
Dependable Systems and Networks (DSN 2009), Estoril, Lisbon, Portugal, June 2009.

  [Xu05] Xu, W. et al., “Testing Web Services by XML perturbation”, 16th IEEE
International Symposium on Software Reliability Engineering, 2005.

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

178

Questions?

Julio C. Estrella, Marco Vieira, Kalinka R. L. J. Branco Services 2010, July 05-10, 2010

90

179

Thanks for your participation!

Marco Vieira

Center for Informatics and Systems
University of Coimbra
mvieira@dei.uc.pt

Julio Cezar Estrella
Kalinka R. L. J. C. Branco
University of Sao Paulo - Brazil
jcezar@icmc.usp.br, kalinka@icmc.usp.br

