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Abstract. Evolutionary algorithms are only superficially different and
can be unified within an axiomatic geometric framework by abstraction
of the solution representation. This framework describes the evolutionary
search in a representation-independent way, purely in geometric terms,
paving the road to a general theory of evolutionary algorithms. It also
leads to a principled design methodology for the crossover operator for
any solution representation.

1 Context of the research

Evolutionary Algorithms (EAs) are successful and widespread general problem
solving methods that mimic in a simplified manner biological evolution. Whereas
all EAs share the same basic algorithmic structure, they differ in the solution
representation - the genotype - and in the search operators employed - mutation
and crossover - that are representation-specific. Is this difference only superfi-
cial? Is there a deeper unity encompassing all mutation and crossover operators
beyond the specific representation, hence all EAs? So far, no one has been able
to attack this question successfully and has proposed a general mathematical
framework that unifies search operators for all solution representations.

In the research community there is a strong feeling that the EC field needs
unification and systematization in a rational framework to survive its own ex-
ceptional growth (De Jong [4]). Beside De Jong, there are important researchers
who have been promoting EC unification: Radcliffe pioneered a unified theory
of representations [11], although he never used the word “unification”. Riccardo
Poli unified the schema theorem for traditional genetic algorithms and genetic
programming [3]. Chris Stephens suggests that all evolutionary algorithms can
be unified using the language of dynamical systems and coarse graining [1]. Franz
Rothlauf has initiated a theory of representations [12].

2 Research and study

2.1 Research questions and goals

My research questions are:
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1. Possibility: Is the unification of evolutionary algorithms within a general
mathematical framework possible?
2. Utility: What are the advantages and consequences of the unification?

The significance of the unification is not obvious a priori and resides in the
important consequences and insights brought about by seeing evolutionary al-
gorithms from a new and more general viewpoint. For this reason the focus of
my research is both on possibility and utility of unification.

My goals are: developing a formal framework for the unification, show that
this framework helps to rethink various familiar aspects of evolutionary algo-
rithms simplifying and clarifying their roles, show that the unification is possible
and many preexisting representations and operators fit the framework, show
that the formal framework can be used to do crossover principled design for any
representation, show that the framework forms a solid basis for a representation-
independent theory that applies to all evolutionary algorithms.

2.2 Current status: overview of the achievements

In this section, a short overview of the research achievements is reported. A
sample of the results that will appear in the thesis is reported in section 4. Most
of this research has been already published [5] [6] [8] [7] [9] or is about to be
published.

1. Possibility of unification: mathematical unification is possible. Developed
an axiomatic geometric framework for unification. The definition of search
operators is axiomatic and intentionally does not involve the notion of rep-
resentation: unification by abstraction of the representation®.

2. Clarification and simplification: the change in perspective coming with uni-
fication completely reverses the orthodoxy [2] clarifying and simplifying
many fundamental aspects of evolutionary algorithms. Clarified the con-
sequences of this new perspective on fundamental notions: common search
space for mutation and crossover, problem-independent and representation-

independent formal evolutionary algorithm, simple fitness landscape of crossover,

geometric format of problem knowledge, role of the EA designer, duality of
neighborhood search and representation-based evolutionary search.

3. Interesting scope of unification: the significance of unification lies on how
many interesting cases it encompasses. Shown that many interesting pre-
existing operators for the most-used representations fit the requirements of
the unification.

4. Crossover principled design: by reversing the abstraction and applying the
abstract definition of crossover to a distance firmly rooted in a specific rep-
resentation one obtains a formal recipe to build new crossovers for any rep-
resentation. When the distance chosen as basis for the new crossover is

! This does not mean I regard solution representation as an “implementation de-
tail” and unimportant. This means that the relationship between representation and
search operators, which is ultimately what is relevant to the search, can be expressed
in a geometric language that is representation-independent.
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meaningful in terms of the problem addressed, the new operator is likely
to perform well. This way of doing crossover principled design is the rep-
resentation dual of the neighborhood search meta-heuristic path-relinking
that suggests picking new solutions on a path (not necessarily shortest) in
the search space connecting parent solutions. Unlike path-relinking that ne-
glects altogether the underlying solution representation and does not show
how to actually generate offspring (that is left as “implementation details”),
geometric crossover tells exactly how to manipulate the syntax of the solu-
tion representation to build offspring solutions. Various examples of crossover
design are given with good experimental results.

5. Depth of the abstraction and general theory: the significance of an abstrac-
tion lies on the kind of results that can be inferred using only the axioms the
abstraction is based upon; if only trivialities encompassing all evolutionary
algorithms can be inferred, the abstraction is not significant. The geometric
abstraction is indeed significant. (i) A fundamental result is that all evolu-
tionary algorithms with any solution representation and with search opera-
tors that fit the geometric framework do the same search, convex search. This
is a simple, deep and important result arising from the geometric interpreta-
tion of mutation and crossover only. (ii) Convexity plays a major role in the
way evolutionary algorithms search the space: the evolutionary search can be
naturally recast from the point of view of the underlying metric convexity
associated with the search space. This allows showing the correspondence
of metric convex sets with inheritable genetic traits, and generalize in a
representation-independent way the notion of schema. Then, doing coarse-
graining of the equation of the evolutionary dynamics over the convex sets
one obtains a representation-independent schema theorem. The importance
of this result relies on the fact that it reconciles two fundamental notions that
until now were separated: the notion of inheritance and the notion of fitness
landscape. Specifying the representation-independent definition of inherita-
ble trait (schema) for a distance rooted on a specific solution representation,
one can reveal the syntactic appearance of schemata for any representation.
When applied to DNA strands with edit distance, this can have important
application in genetics to discover new genes. (iii) Knowing how all evo-
lutionary algorithms search the space is preliminary to understand under
what general condition on the fitness landscape they perform well. Fitness
distribution, correlation of the fitness landscape and performance are studied
together to show why positive correlation in the landscape makes geometric
crossover and geometric mutation perform better than random search.

2.3 Future planning

From February to June 2006 focus on: writing-up the thesis. I have most
of the material in the form of draft/submitted/published papers. Background
activities: writing a journal paper, writing grant proposal and maybe submitting
a paper to PPSN.
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Future after PhD: ideally, I would like to stay in academia, becoming a lecturer
and continuing this research.

2.4 Study

I am finishing my third year of PhD study. In theory, one could finish within 3
years; in practice, it is more common to do 3 years of research and then doing
the writing-up and submitting the thesis the 4th year, the so-called completion
year. Every 6 months there is a board meeting in which a panel of academics
evaluate the progress of PhD students from the previous board meeting using
a system with milestones and give suggestions/feedback on the research and
research plan.

3 Methodology and thesis outline

3.1 Methodology: focus on unification

Unification is a delicate matter: besides proving that unification is possible in
principle, one has to explain the consequences of the new angle on a network
of related concepts. Plus, one has to go wide and show that many interesting
cases are actually encompassed, but one also needs to go deep to show that the
unification does capture some fundamental aspects common to all evolutionary
algorithms and not only trivialities can be inferred for all evolutionary algo-
rithms. Moreover one needs also to show that unification is not only theory for
its own sake but that has practical advantages too. This all needed to be done
within a time-window of a PhD study. To different extent I think I managed to
address all the previous points. Naturally, since a complete and thorough unifi-
cation is a monumental task, I focussed on particular topics that I felt had the
priority and showed that a particular important territory is encompassed by the
unification. By no means, I have exploited systematically each topic covered as
much as it would have deserved. Indeed, each topic would have taken a PhD to
be exhaustively addressed alone. Since the focus is the unification, for each topic
I have shown instead how the geometric framework reveals its connection with
all the others and this in turn had shed light on the specific topic itself.

3.2 Thesis outline

Title: Geometric unification of evolutionary algorithms

Thesis: Evolutionary algorithms are only superficially different and can be uni-
fied within an axiomatic geometric framework by abstraction of the solution rep-
resentation. This framework describes the evolutionary search in a representation-
independent way, purely in geometric terms, paving the road to a general theory
of evolutionary algorithms. It also leads to a principled design methodology for
the crossover operator for any solution representation.
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1 Introduction
2 Geometric framework
2.1 Geometric preliminaries
2.2 Search operators definition
2.3 Change in perspective
2.3.1 Formal evolutionary algorithm
2.3.2 Geometric fitness landscape
2.3.3 Problem knowledge
2.3.4 Representation/neighbourhood duality
3 Representation unification
3.1 Geometric unification by abstraction
Binary and multary strings
Real vectors
Permutations: simple, circular and with repetitions
Syntactic trees
Biological sequences
3.7 Structural representations
4 Crossover principled design
4.1 Geometric design principles
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4.2 N-queens problem

4.3 TSP

4.4 JSSP

4.5 Protein motif discovery
4.6 Sudoku

4.7 Graph partitioning
5 Representation-independent theory

5.1 Generality of the theory

5.2 Convex evolutionary search

5.3 Convexity, heredity and generalized schema theorem

5.4 Fitness distribution, correlated landscape and performance
6 Future work

6.1 More unification

6.2 Establish crossover principled design

6.3 Developing the general theory

6.4 Computational perspective on biological evolution

4 Results

In this section I report a sample of the results that will appear in the thesis.
Section 4.1 introduces the representation-independent definition of geometric
crossover and describes how crossover connects with fitness landscape. The merit
of the geometric framework here is that it simplifies enormously this connection:
unlike the established paradigm [2] the geometric interpretation of crossover in
the landscape is simple and intuitive. Section 4.2 shows that a number of recom-
bination operators for 5 important representations are actually specific instances
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of geometric crossover. Section 4.3 gives an example of crossover principled de-
sign for the TSP problem. Experimental results (not reported) show that this
crossover performs extremely well. Finally, section 4.4 gives an example of a
very general representation-independent theoretical result that holds for all evo-
lutionary algorithms using instances of geometric crossover.

4.1 Geometric framework

Geometric preliminaries The terms distance and metric denote any real
valued function that conforms to the axioms of identity, symmetry and triangular
inequality. A simple connected graph is naturally associated to a metric space
via its path metric: the distance between two nodes in the graph is the length
of a shortest path between the nodes. Similarly, an edge-weighted graph with
strictly positive weights is naturally associated to a metric space via a weighted
path metric.

In a metric space (S,d) a closed ball is the set of the form B(z;r) = {y €
Sld(x,y) < r} where x € S and r is a positive real number called the ra-
dius of the ball. A line segment (or closed interval) is the set of the form
[z;y] = {7z € Sld(x,2) + d(z,y) = d(z,y)} where x,y € S are called extremes of
the segment. Metric ball and metric segment generalize the familiar notions of
ball and segment in the Euclidean space to any metric space through distance re-
definition. These generalized objects look quite different under different metrics.
Notice that a metric segment does not coincide to a shortest path connecting
its extremes (geodesic) as in an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is the union of
all geodesics.

We assign a structure to the solution set by endowing it with a notion of
distance d. M = (S5,d) is therefore a solution space and L = (M,g) is the
corresponding fitness landscape (where g is the fitness function). Notice that d
is arbitrary and need not have any particular connection or affinity with the
search problem at hand.

Geometric crossover definition The following definitions are representation-
independent therefore crossover is well-defined for any representation. It is only
function of the metric d associated with the search space being based on the
notion of metric segment.

Definition 1. (Image set) The image set Im[OP] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
s a geometric crossover where all z laying between parents x and y have the same
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probability of being the offspring:

6(z € [z;y])
|3 ]|

ImlUX (z,y)] = {z € S|fux(z[z,y) > 0} = [w;y].

fUX(z|xay) =

A number of general properties for geometric crossover and mutation have been
derived.

Geometric crossover landscape Geometric operators are defined as functions
of the distance associated to the search space. However, the search space does
not come with the problem itself. The problem consists only of a fitness function
to optimize, that defines what a solution is and how to evaluate it, but it does
not give any structure on the solution set. The act of putting a structure over the
solution set is part of the search algorithm design and it is a designer’s choice. A
fitness landscape is the fitness function plus a structure over the solution space.
So, for each problem, there is one fitness function but as many fitness landscapes
as the number of possible different structures over the solution set. In principle,
the designer could choose the structure to assign to the solution set completely
independently from the problem at hand. However, because the search operators
are defined over such a structure, doing so would make them decoupled from the
problem at hand, hence turning the search into something very close to random
search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. For example, one can study the objective function of the problem
and select a neighborhood structure that couples the distance between solutions
and their fitness values. Once this is done problem knowledge can be exploited
by search operators to perform better than random search, even if the search
operators are problem-independent (as in the case of geometric crossover and
mutation).

Under which conditions is a landscape well-searchable by geometric oper-
ators? As a rule of thumb, geometric mutation and geometric crossover work
well on landscapes where the closer pairs of solutions, the more correlated their
fitness values. Of course this is no surprise: the importance of landscape smooth-
ness has been advocated in many different context and has been confirmed in
uncountable empirical studies with many neighborhood search meta-heuristics
[10].

4.2 Representation unification

We consider the application of geometric crossover to five important representa-
tions: real vectors, n-ary strings, permutations, variable-size sequences and syn-
tactic trees. The aim here is to give a portfolio of concrete examples of applica-
tion of the theoretical ideas outlined before. We will see how geometric crossover
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unifies pre-existing crossovers for different representations (real vectors, binary
strings, permutations, syntactic trees), how it casts new interpretations of pre-
existing crossovers (crossover for permutations are sorting algorithms), how it
guides to the principled design and implementation of new crossovers for new
representations (variable-size sequences), how it may connect artificial and bio-
logical evolution (variable-size sequences) and how it helps to understand what
is the search space and distance associated to a pre-existing crossover operator
(syntactic trees).

Real vectors Pre-existing crossover operators, both blending type crossovers
and discrete type recombinations fit the definition of geometric crossover nat-
urally (see fig. 1). The extended version of blending crossovers does not fit the
definition of geometric crossover (for any distance).

Binary strings The Hamming scheme is the association scheme where the
elements are vectors of length d over some alphabet of size q. The Hamming
distance of two vectors is the number of coordinates where they differ. The
Hamming graph H(d,q) is the graph that describes the distance-1 relation in
the Hamming scheme. It is the direct product of d complete graphs of size
q. For d = 2 one gets the qq grid, also known as the lattice graph of order
q. The Hamming graphs H(d,2) are the familiar hyper-cubes associated with
binary strings of size d. The search operators are implemented by syntactic
manipulation of strings equivalent to the geometric transformations required by
the search operators. A geodesic between two points is a shortest path between
two points. A shortest path in the edit distance graph is a minimal sequence of
edit moves that transforms the syntax of one parent to the syntax of the other.
In the case of binary string the edit move is bit-flip and in the case of multary
strings the edit move is a substitution. The uniform crossover for binary strings
is equivalent to picking any minimal sequence of bit-flip (that changes at most
once one bit) that transforms one parent string into the other and interrupt the
transformation somewhere in the middle. The one-point crossover (selecting one
crossover point and swapping strings tails) is equivalent to applying a macro
edit-move equivalent to the application of a specific minimal sequence of edit
moves connecting the two parent strings interrupted somewhere in the middle.

All traditional mask-based crossovers for binary and multary strings are ge-
ometric under Hamming distance. See also fig. 2.

Permutations Pre-existing operators for permutations are sorting algorithms
in disguise because picking offspring on the shortest path based on edit distances
for permutations translates into picking offspring on a minimal sorting trajecto-
ries between parent permutations (see fig. 3). For example, PMX is geometric
under swap distance.

Syntactic trees The search space and distances associated with pre-existing
genetic operators for syntactic trees are little understood. Here, differently form
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the previous representations, we want to use the geometric definitions not to
guide the design and implementation of new operators for syntactic trees but
rather we want to find the distance, hence the search space, associated to pre-
existing operators if any of such distance exists. There are various notions of
distance defined for GP trees. Distances among GP trees are used to (1) main-
tain diversity in the population and (2) predict performance (fitness-distance
correlation). If the distance employed does not match the operator used its use
is meaningless. So far it has been difficult to show that a certain distance matches
a certain operator. Here we propose a new distance, the structural hamming dis-
tance (SHD) (a variation of the well-known structural distance for trees), that
perfectly matches with Poli’s Homologous crossover. Fig.4 shows an example of
how SHD and hyperschema connect.

Koza’s crossover is not geometric: there is provably no distance for which it
is a geometric crossover. Poli’s homologous crossovers family (1-point crossover,
uniform crossover, homologous crossover, point mutation) is geometric under
SHD.

Variable-length sequences Let us consider a recombination for variable-
length sequences that requires an inexact sequence alignment before applying
the traditional crossover on the alignment.

Parent1=AGCACACA
Parent2=ACACACTA

best inexact alignment by dynamic programming:
AGCA|CAC-A
A-CA|CACTA

Child1=AGCACACTA
Child2=ACACACA

This crossover and its generalization can be proven to be geometric under
Levinshtein edit distance (insertion, deletion, substitution).

Does it have biological significance? Edit distance is a very meaningful dis-
tance to compare DNA strands. The present model of crossover (based on perfect
alignment) cannot explain molecular evolution. Molecular evolution is tried to be
explained by mutation only or by unequal crossover (imperfect crossover). Two
DNA strands before crossover align on their contents to minimize the free-energy
admitting gaps, compressions and mismatch alignment (molecular annealing).
Geometric crossover based on edit-distance could be a better model of biological
crossover in that model more realistically the effect of molecular annealing and
could explain molecular evolution.

4.3 Crossover principled design: TSP

We consider a solution as a tour of cities and, therefore, rather than being defined
for permutations geometric crossover is defined over circular permutations.
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In the case of circular permutations, the block-reversal move is the notion of
edit distance that makes sense for TSP. In a single application to a tour, this does
the minimal change to the adjacency relation among elements in the permuta-
tion. This move is the well-known 2-change move, and it is the basis for successful
local search algorithms for TSP . Figure 5 shows the possible offspring (the seg-
ment) between two circular (parent) permutations under topological crossover.

Analogously to the linear case, the circular permutations in the segment
under reversal distance are those laying in a minimal sorting trajectory from
a parent circular permutation to the other. Sorting circular permutations by
reversals is NP-hard. So, the topological crossover under this notion of distance
cannot be implemented efficiently.

Sorting circular permutations by reversals is tightly connected with the prob-
lem of sorting linear permutations by reversals. So all the algorithms developed
for the latter task can be used with minor modifications also for the former.
Sorting linear permutations by reversals is NP-hard too. However a number of
approximation algorithms (running in polynomial time) exist to solve this prob-
lem within a bounded error from the optimum. This allows implementing effi-
ciently approximate crossovers whose image set is a super-set of that of the exact
crossover. We have implemented this crossover and found that it outperforms
edge recombination that is known to be very good for TSP.

4.4 Representation-independent theory: convex evolutionary search

Using the axioms of distance and the definition of geometric crossover we can
prove a main result: an evolutionary algorithm using geometric crossover with
any probability distribution, any kind of representation, any problem, any se-
lection and replacement mechanism, does the same search: convex search. Proof
based on abstract convexity (axiomatic geodesic convexity) and axiomatization
of search process (abstract search process). See Fig. 6 for an example of convex
search in the intuitive case of Euclidean space.

5 Achievements and future directions

Achievements: this work answers fully the research questions, now there is no
doubt about possibility and utility of unification, and explores the main research
directions the unification opens up discovering new territories that now are ready
to be conquered. For its own nature, a unification project can be evaluated only
at the end when the whole picture is laid down, since each block reinforces the
significance of unification as a unity only when put aside all the others. My hope
is that the overall picture that emerges looks like a harmonious balance between
all aspects of the unification.

Future directions: there are three main roads to follow from here.

1. The road to principled design: the first one is to unify a design methodology
merging path-relinking and geometric crossover design.
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2. The road to computational complezity: the second road is developing a the-
ory which aim is general computational complexity results for evolutionary
algorithms.

3. The road to biological evolution: the third road is casting a computational
perspective on biological evolution to understand why is able to do “intelli-
gent design” so effectively and efficiently without intelligence.

6 Feedback

Unification is a delicate matter: to deliver a meaningful unification, on one hand,
many different aspects needed to be explored in parallel without losing sight of
the overall objective. On the other hand, every topic needed to be exploited up
to a point for which the consequences of unification on that particular direction
were crystal clear. This all needed to be done within a time-window of PhD
study. To different extent I think I managed to address all the important aspects
of unification. However a question remains: is the overall emerging picture a
harmonious balance between all aspects?
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Fig. 5. Example of topological crossover between two circular permutations.

Fig. 6. Geometric crossover + selection = convex search.



