
Inertial Geometric Particle Swarm Optimization

Alberto Moraglio and Julian Togelius

Abstract— Geometric particle swarm optimization (GPSO)
is a recently introduced formal generalization of a simplified
form of traditional particle swarm optimization (PSO) without
the inertia term that applies naturally to both continuous and
combinatorial spaces. In this paper, we propose an extension
of GPSO, the inertial GPSO (IGPSO), that generalizes the
traditional PSO endowed with the full equation of motion of
particles to generic search spaces. We then formally derive the
specific IGPSO for the Hamming space associated with binary
strings and present experimental results for this new algorithm.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is a relatively recently

devised popualtion-based stochastic global optimization al-

gorithm [3]. PSO has many similarities with evolutionary

algorithms, and has also proven to have robust performance

over a variety of difficult optimization problems. However,

the original formulation of PSO requires the search space

to be continuous and the individuals to be represented as

vectors of real numbers.

There are a number of extensions of PSO to combinatorial

spaces with various degrees of success [2] [1]. However,

every time a new solution representation is considered, the

PSO algorithm needs to be rethought and adapted to the new

representation.

Geometric Particle Swarm Optimization (GPSO) is a very

recently devised generic extension of PSO that can be applied

to any search space endowed with a distance and associated

with any solution representation to derive formally a specific

GPSO for the target space [6]. In previous work, we derived

and tested specific GPSOs for different types of continuous

spaces and for the Hamming space associated with binary

strings [7], for spaces associated with permutations [13] and

for spaces associated with Genetic Programming trees [16].

GPSO generalizes a simplified version of PSO in which

the inertia coefficient is set to 0, and the sum of the sociality

and memory coefficients do not exceed 1. This simplified

form of PSO was considered to allow for a simple geometric

interpretation of the dynamics of the particles in space which

then was used as the basis for the generalization.

When the PSO algorithm was first proposed, it did not

include the inertia term. Inertia was introduced in a later de-

velopment [14]. Inertia turned out to be an essential element

to obtain good performances on a variety of problems and

became a standard PSO component.

In this paper, we present a formal generalization of the

complete PSO equation, including inertia and without restric-

A. Moraglio is with the Centre for Informatics and Systems of the
University of Coimbra, Polo II - University of Coimbra, Coimbra 3030-
290, Portugal (email: moraglio@dei.uc.pt).

J. Togelius is with the Dalle Molle Institute for Artificial Intelligence (ID-
SIA), Galleria 2, Manno-Lugano 6928, Switzerland (email: julian@idsia.ch)

tions on the coefficients, to general spaces via a geometric

interpretation of the dynamic of the particles governed by

the full PSO equation. We then formally derive the specific

IGPSO for the Hamming space associated with binary strings

and present experimental results for this new algorithm.

II. THE GEOMETRY OF REPRESENTATIONS

In this section, we introduce, in an accessible way, the

ideas behind a recent formal theory of representations [5]

which forms the context for the generalization of the PSO

with the full equation presented in the following sections.

Familiar geometric shapes in the Euclidean plane such as

for example circles, ellipses, segments, semi-lines, triangles

and convex polygons can be defined using distances between

points in space. For example, a circle is the locus of points

from which the distance to the centre c is a given constant

value, the radius r. By replacing in the definition of a shape,

say a circle, the Euclidean distance with a different distance,

say the Hamming distance, we obtain the definition of a circle

in the Hamming space. A circle in the Hamming space looks

quite different from a circle in the Euclidean plan, however

they both share the same geometric definition. Analogously,

if we replace the Euclidean distance with the Manhattan

distance, we obtain the definition of a circle in the Manhattan

space. A number of simple geometric shapes based on the

Manhattan distance in the plane have been derived explicitly

(see Taxicab Geometry [4]). We can in fact replace the Eu-

clidean distance in the definition of any geometric shape with

any distance meeting a minimum number of requirements

(metric), obtaining the corresponding shape in a space with a

different geometry. We can also raise the level of abstraction

and replace the Euclidean distance with a generic metric,

obtaining an abstract shape, such as for example an abstract

circle. An abstract circle captures what is common to all

circles across all possible geometries. Any property of an

abstract circle is also a property of any space-specific circle.

Search algorithms can be viewed from a geometric per-

spective. The search space is seen as a geometric space with

a notion of distance between points, and candidate solutions

are points in the space. For example, search spaces associated

with combinatorial optimization problems are commonly

represented as graphs in which nodes corresponds to can-

didate solutions and edges between solutions correspond to

neighbour candidate solutions. We can endow these spaces

with a distance between solutions equal to the length of the

shortest path between their corresponding nodes in the graph.

Geometric search operators are defined using geometric

shapes to delimit the region of search space where to sample

offspring solutions relative to the positions of parent solu-

tions. For example, geometric crossover is a search operator



that takes two parent solutions in input corresponding to

the end-points of a segment, and returns points sampled

at random within the segment as offspring solutions. The

specific distance associated with the search space at hand is

used in the definition of segment to determine the specific

geometric crossover for that space. Therefore, each search

space is associated with a different space-specific geometric

crossover. However, all geometric crossovers have the same

abstract geometric definition.

In analytic geometry, in which points of the Cartesian

plane are in one-to-one correspondence with pairs of num-

bers, their coordinates, the same geometric shape can be

equivalently expressed geometrically as a set of points in the

plane, or algebraically, by an equation whose solutions are

the coordinates of its points. This is an important duality

which allows us to treat geometric shapes as equations

and vice versa. There is an analogous duality that holds

for geometric search operators. Candidate solutions can be

thought equivalently as points in space, geometric view, or as

a set of syntactic configurations of a certain type, algebraic

view. For example, a candidate solution in the Hamming

space can be considered as a point in space or as a binary

string corresponding to that point. The binary string can

then be thought as being the coordinates of the point in

the Hamming space. This allows us to think of a search

operator equivalently as (i) an algorithmic procedure which

manipulates the syntax of the parent solutions to obtain the

syntactic configurations of the offspring solutions using well-

defined representation-specific operations (algebraic view),

or (ii) a geometric description which specifies what points

in the space can be returned as offspring for the given

parent points and with what probability (geometric view).

For example, uniform crossover for binary strings [15] is a

recombination operator that produces offspring binary strings

by inheriting at each position in the binary string the bit

of one parent string or of the other parent string with the

same probability. This is an algebraic view of the uniform

crossover that tells how to manipulate the parent strings to

obtain the offspring string. Equivalently, the same operator

can be defined geometrically as the geometric crossover

based on the Hamming distance that takes offspring uni-

formly at random in the segment between parents. There are

two important differences between these two definitions of

the same operator. The geometric definition is declarative,

it defines what offspring the operator returns given their

parents without explicitly telling how to actually generate the

offspring from the parents. Whereas the algebraic definition

is operational, since it defines the search operator by telling

for each combination of parents how to build the correspond-

ing offspring. The second important difference is that the

geometric description of a search operator is representation-

independent and refers only indirectly to the specific solution

representation via a distance defined on such representation

(i.e. edit distances such as the Hamming distance which can

be defined on the binary string representation as the mini-

mum number of bit-flips to obtain one string from the other).

In contrast, the algebraic definition of a search operator is

representation-dependent and uses operations which are well-

defined on the specific solution representation but that may

not be well-defined on other representations (e.g. bit-flip on

a binary string is not well-defined on a permutation).

The duality of the geometric search operators has sur-

prising and important consequences [5]. The one which is

the basis for the present paper is about the possibility of

principled generalization of search algorithms for continuous

spaces to combinatorial spaces, as sketched in the following.

Given a search algorithm defined on continuous spaces,

recast the definition of the search operators expressing them

explicitly in terms of Euclidean distance between parents and

offspring. Substitute the Euclidean distance with a generic

metric, obtaining a formal search algorithm generalizing the

original algorithm based on the continuous space. Consider

a (discrete) representation and a distance associated with

it (combinatorial space) and use it in the definition of the

formal search algorithm to obtain a specific instance of the

algorithm for this space. Use this geometric and declarative

description of the search operator to derive its algebraic

and operational definition in terms of manipulation of the

underlying representation. As mentioned in the introduction,

we applied this methodology to generalize a simplified form

of PSO to any metric space and derived the specific search

operators for a number of representations. In the following

sections, we use it to generalize the PSO with the full

equation. This methodology can be used to generalize to

combinatorial spaces other algorithms naturally based on a

notion of distance. This includes search algorithms such as

Differential Evolution, Response Surface Methods, Estima-

tion of Distribution Algorithms and Lipschitz Optimization

algorithms, but also Supervised Machine Learning algorithms

may be generalized to learn functions whose domain and

codomain are any types of structured objects. These gener-

alizations are the focus of our current research.

III. GEOMETRIC PARTICLE SWARM OPTIMIZATION

This section prepares the ground for the theory of the gen-

eralization of the PSO with inertia, which will be presented

in the following section. In this section, we review the theory

behind the GPSO algorithm. We first define the concepts of

geometric crossover and multi-parent geometric crossover,

and use these to define the concept of a convex geometric

combination in metric spaces, which is the basis for the

generalization of the traditional PSO without inertia. The

GPSO algorithm obtained, which can be used independently

of its theoretical derivation, is found in section III-D.

A. Geometric crossover

Geometric operators [8] are search operators defined in

geometric terms using simple geometric elements such as

line segments and balls. These notions and the corresponding

genetic operators are well-defined once a notion of distance

(metric) in the search space is defined.

In a metric space (S, d) a closed ball is a set of the form

B(x; r) = {y ∈ S|d(x, y) ≤ r} where x ∈ S and r is



a positive real number called the radius of the ball. A line

segment is a set of the form [x; y] = {z ∈ S|d(x, z) +
d(z, y) = d(x, y)} where x, y ∈ S are called extremes of

the segment. Metric ball and metric segment generalise the

familiar notions of ball and segment in the Euclidean space

to any metric space through distance redefinition.

Definition 1: A binary operator is a geometric crossover

under the metric d if all offspring are in the segment between

its parents.

The definition is representation-independent and, there-

fore, crossover is well-defined for any representation. Being

based on the notion of metric segment, crossover is only

function of the metric d associated with the search space.

This class of operators is really broad. For vectors of

reals, various types of blend or line crossovers, box re-

combinations, and discrete recombinations are geometric

crossovers [8]. For binary and multary strings, all homol-

ogous crossovers are geometric [8] [10]. For permutations,

PMX, Cycle crossover, merge crossover and others are

geometric crossovers [11]. For syntactic trees, the family of

homologous crossovers are geometric [9]. Recombinations

for several more complex representations are also geometric

[10] [8] [12].

B. Multi-parent geometric crossover

To extend the geometric crossover to the case of multiple

parents we need the notions of metric convex set and metric

convex hull.

A set is a metric convex set if for every pair of points

within the set, every point in the metric segment that joins

them is also within the set.

The metric convex hull of a set of point P is the smallest

metric convex set that includes all points in P . For example,

in the Euclidean case, when the set P contains two points

the convex hull of P is the segment whose extremes are the

points in P . When the set P contains three points the convex

hull of P is the triangle whose vertices are the points in P .

Definition 2: (Multi-parental geometric crossover) In

a multi-parental geometric crossover, given n parents

p1, p2, . . . , pn their offspring are contained in the metric

convex hull of the parents C({p1, p2, . . . , pn}) for some

metric d
Theorem 1: (Decomposable three-parent recombination)

Every multi-parental recombination RX(p1, p2, p3) that can

be decomposed as a sequence of 2-parental geometric

crossovers under the same metric GX and GX ′, so that

RX(p1, p2, p3) = GX(GX ′(p1, p2), p3), is a three-parental

geometric crossover

C. Convex combination in metric spaces

In order to define PSO for a generic metric space, we need

to extend the notion of convex combination to generic metric

spaces.

For the Euclidean space, a convex combination is a lin-

ear combination of vectors where all coefficients are non-

negative and sum up to 1. It is called “convex combination”,

since, when a vector represents a point in space, all possible

convex combinations (given the base vectors) will be within

the convex hull of the given points. In fact, the set of all

convex combinations constitutes the convex hull.

The weight of a point in a convex combination can be

seen as a measure of relative linear attraction toward its

corresponding point versus attractions toward the other points

of the combination. The closer the weight to one, the stronger

the attraction to its corresponding point. The resulting point

of the convex combination can be seen as a weighted spatial

average and it is the equilibrium point of all the attraction

forces. The distance between the equilibrium point and a

point of the convex combination is therefore a decreasing

function of the level of attraction (weight) of the point:

the stronger the attraction, the smaller its distance to the

equilibrium point. This observation can be used to reinterpret

the weights of a convex combination in a metric space as

follows: y = w1x1 + w2x2 + w3x3 with w1, w2 and w3

greater than zero and w1 + w2 + w3 = 1 is generalized to

d(x1, y) ∼ 1/w1, d(x2, y) ∼ 1/w2 and d(x3, y) ∼ 1/w3.

This definition is formal and valid for all metric spaces

but it is non-constructive. A convex combination for the

Euclidean space, not only defines a convex hull, but it tells

also how to reach all its points. For convex combinations

based on combinatorial spaces, how to achieve this is not

obvious. Weighted multi-parental geometric crossovers can

be used to pick points specified by convex combinations in

combinatorial spaces.

For the Euclidean space, a weighted three-parental

geometric crossover can be actually decomposed

into two sequential applications of weighted two-

geometric crossover: ∆GX((a,wa), (b, wb), (c, wc)) =
GX((GX((a, wa

wa+wb

), (b, wb

wa+wb

)), wa +wb), (c, wc)). This

formula can be used as a rule of thumb to build weighted

three parental geometric crossovers from weighted bi-

parental geometric crossovers for any solution representation.

D. GPSO algorithm

Consider the canonical PSO in Algorithm 1. The main

feature that allows the motion of particles is the ability to

perform linear combinations of points in the search space. To

obtain a generalisation of PSO to generic search spaces, we

can achieve this same ability by using multiple (geometric)

crossover operations.

Theorem 2: In a PSO with no inertia (ω = 0) and where

social and memory coefficients are such that φ1 + φ2 < 1,

the future position of each particle x′ is within the triangle

formed by its current position x, its local best x̂ and the

swarm best ĝ. Furthermore, x′ can be expressed without

involving the particle’s velocity as x′ = (1 − w2 − w3)x +
w2x̂ + w3ĝ.

The generic Geometric PSO algorithm is illustrated in

Algorithm 2. This differs from the standard PSO (Algo-

rithm 1) in that: there is no velocity1, the equation of position

1This means that the GPSO algorithm does not keep explicitly track of
the velocities of the particles. However, note that every particle that in two
successive states is in a different place has a velocity because it has moved
of a distance in space in the time unit.



Algorithm 1 Standard PSO algorithm

1: for all particle i do

2: initialise position xi ∈ U [a, b] and velocity vi = 0

3: end for

4: while not converged (optimum of current objective function is not found) do

5: for all particle i do

6: set personal best x̂i as best position found so far from the particle (best of

current and previous positions)

7: set global best ĝ as best position found so far from the whole swarm (best

of personal bests)

8: end for

9: for all particle i do

10: update velocity using equation

vi(t+1) = ωvi(t)+φ1R1(ĝ(t)−xi(t))+φ2R2(x̂i(t)−xi(t)) (1)

11: update position using equation

xi(t + 1) = xi(t) + vi(t + 1) (2)

12: end for

13: end while

update is the convex combination, there is mutation (to partly

compensate for the lack of inertia which would sometimes

allow the next position of a particle being generated outside

the convex hull) and the parameters ω, φ1, and φ2 are positive

and sum up to one. The parameter ω of the GPSO is not

equivalent to the inertia coefficient in the traditional PSO.

This is because the former represents the linear attraction

rate toward the previous position of the particle, whereas

the latter quantifies the tendency of the new velocity of the

particle to be close to its previous velocity in magnitude and

direction.

Algorithm 2 Geometric PSO algorithm

1: for all particle i do

2: initialise position xi at random in the search space

3: end for

4: while stop criteria not met do

5: for all particle i do

6: set personal best x̂i as best position found so far by the particle

7: set global best ĝ as best position found so far by the whole swarm

8: end for

9: for all particle i do

10: update position using a randomized convex combination

xi = CX((xi, ω), (ĝ, φ1), (x̂i, φ2)) (3)

11: mutate xi

12: end for

13: end while

IV. INERTIAL GPSO

A. Geometric Interpretation of the full PSO equation

Let us consider the velocity update equation for the particle
i:

vi(t+1) = ωvi(t)+φ1R1(ĝ(t)−xi(t))+φ2R2(x̂i(t)−xi(t)) (4)

where ω, φ1, φ2 ≥ 0 and R1, R2 are random variables

uniformly distributed in [0, 1].
We can rewrite the equation 4 as follows:

vi(t+1) = kωvi(t)+kφ1(ĝ(t)−xi(t))+kφ2(x̂i(t)−xi(t)) (5)

where k = ω + φ1R1 + φ2R2, ω = ω
k
, φ1 = φ1R1

k
, φ2 =

φ2R2

k
. We have that k, ω, φ1, φ2 ≥ 0 and ω + φ1 + φ2 = 1.

From the position update equation (equation 2), we have
that the velocities vi(t + 1), vi(t) in the previous equation
can be expressed only in terms of positions as follows:

vi(t + 1) = xi(t + 1) − xi(t)
vi(t) = xi(t) − xi(t − 1)

(6)

So, replacing them in equation 5 and dividing both sides
of the equality by k we obtain:

xi(t+1)−xi(t)
k

= ω(xi(t) − xi(t − 1))+
+φ1(ĝ(t) − xi(t)) + φ2(x̂i(t) − xi(t))

(7)

We can rewrite equation 7 as follows:

1

k
xi(t+1)+ωxi(t−1)

1

k
+ω

=

xi(t)(ω+ 1

k
−φ1−φ2)+φ1ĝ(t)+φ2x̂i(t)

1

k
+ω

(8)

The left-hand side of equation 8 is a convex combination of

the vectors xi(t+1) and xi(t− 1) because their coefficients

are larger than 0 (ω, 1
k

> 0) and their sum equals the

denominator of the left-hand side of the equation (ω + 1
k

).

The right-hand side of equation 8 is a convex combination

of the vectors xi(t), ĝ(t) and x̂i(t) only when the condition

ω + 1
k
− φ1 − φ2 > 0 is met. In this case, since φ1, φ2 > 0,

the coefficients of xi(t), ĝ(t) and x̂i(t) are positive, and their

sum equals the denominator of the right-hand side of the

equation (ω + 1
k

).
If the condition that makes the right-hand side of equation

8 a convex combination is not satisfied, we can rewrite
equation 8 as follows:

1

k
xi(t+1)+ωxi(t−1)+xi(t)(φ1+φ2)

1

k
+ω+φ1+φ2

=

xi(t)(ω+ 1

k
)+φ1ĝ(t)+φ2x̂i(t)

1

k
+ω+φ1+φ2

(9)

Both sides of the equation 9 are convex combinations,

without requiring any extra condition.

B. Geometric generalization of the PSO equations

Equations 8 and 9 describe exactly the same dynamics of

the complete PSO equation. Furthermore, they have a direct

geometric interpretation that allows us to generalize them to

any metric space.

For each particle i of the swarm, at a given time t, we

know the positions xi(t− 1), xi(t), x̂i(t) and ĝ(t). Also, we

know all coefficients of the convex combinations involved

in the equations 8 and 9 which are (constant) parameters

which can be derived from the parameters ω (inertia), φ1

(sociality) and φ2 (memory) of the PSO. Therefore, at each

time, we need to compute the new position xi(t + 1) of the

particle i. In sections IV-B.1, IV-B.2 and IV-B.3, we present

the geometric constructions to determine xi(t + 1) for the

GPSO (figure 1) and for the IGPSO based on equations 8

and 9 (figures 2 and 3).

In order to obtain the generalization to metric spaces,

beside a well-defined notion of convex combination, we need

a well-defined notion of extension ray. The extension ray

ER(A,B) in the Euclidean plane is a semi-line originat-

ing in A and passing through B (note that ER(A,B) 6=
ER(B,A)). The extension ray can be defined using only



distances indirectly using metric segments: C ∈ ER(A,B)
iff C ∈ [A,B] or B ∈ [A,C]. So, it is well-defined for any

metric space and any representation. In our case, only the part

of the extension ray beyond B will be of interest because the

point C that we want to determine is never between A and

B by construction.

We can define a notion of weighted extension ray recombi-

nation C = ER((A,wab), (B,wbc)) as the inverse operation

of weighted convex combination CX of two points A and

C, B = CX((A,wab), (C, wbc)), as follows. The distances

d(A,B) and d(B,C) are proportional to the weights wab and

wbc, which are positive real number between 0 and 1 and

sum up to 1. In a weighted extension ray recombination, we

are given A, B, wab and wbc, and we want to determine C.

We can compute the distance d(B,C) = d(A,B)∗wbc/wab.

Then return those points C which are at a distance d(A,B)+
d(B,C) from A and at a distance d(B, C) from B.

Fig. 1. Geometric PSO

1) Geometric construction for GPSO: In GPSO, we can

determine x(t + 1) (see figure 1) by the weighted convex

combination CX(x(t), ĝ(t), x̂(t)) with weights w1 = 1 −
φ1 + φ2, w2 = φ1 and w3 = φ2. Note that φ1 + φ2 ≤ 1 and

after the convex combination, x(t + 1) undergoes mutation.

2) Geometric construction for IGPSO - simple case: In

IGPSO as in traditional PSO, we have 3 parameters: ω, φ1

and φ2, and no mutation. These parameters must be non-

negative and can be larger than 1 (as in the tarditional PSO).

Figure 2 illustrates the geometric relation between points

described by equation 8. Geometrically, the equation we need

to solve to determine x(t + 1) is CX(x(t − 1), x(t + 1)) =
CX(x(t), ĝ(t), x̂(t)). Operationally, this can be done in two

steps, one convex combination of three points, followed by

one extension ray with two points:

1) e(t) = CX(x(t), ĝ(t), x̂(t))
2) x(t + 1) = ER(x(t − 1), e(t))
The weights of CX and ER are functions of the parameters

ω, φ1 and φ2, and correspond to the coefficients of equation

8. For CX we have:

w1 = (ω + 1/k − φ1 − φ2)/(1/k + ω)
w2 = φ1/(1/k + ω)
w3 = φ2/(1/k + ω)
And for ER we have:

w1 = ω/(1/k + ω)
w2 = 1/k/(1/k + ω)

Fig. 2. Inertial Geometric PSO - simple case

where k = ω+φ1 ·R1+φ2 ·R2, ω = ω/k, φ1 = φ1 ·R1/k
and φ2 = φ2 · R2/k.

In the traditional PSO, R1 and R2 are random numbers

uniformly distributed in [0, 1]. However, in IGPSO the same

effect of randomizing the coefficients using random numbers

R1 and R2 is achieved by the randomization of the convex

hull and extension ray operators. To preserve as much as

possible the same interpretation for both traditional PSO and

for the IGPSO of the coefficients ω, φ1 and φ2, we set R1 =
0.5 and R2 = 0.5 to the average values of their distribution.

The simple case of geometric construction presented in

this section holds provided the condition ω + 1 > φ1 + φ2

is met. This condition derives from the condition ω + 1/k−
φ1 − φ2 > 0 associated with equation 8. If this condition

is not met, we need to use the recombination which applies

to the general case with no restrictions on the coefficients

of the PSO. The general recombination degenerates to the

simple case when the above condition is met.

Fig. 3. Inertial Geometric PSO - general case



3) Geometric construction for IGPSO - general case:

Figure 3 illustrates the geometric relation between points

described by equation 9. Geometrically, the equation we need

to solve to determine x(t + 1) is CX(x(t), x(t − 1), x(t +
1)) = CX(x(t), ĝ(t), x̂(t)). Operationally, this can be done

in three steps, two convex combinations and one extension

ray recombination:

1) e(t) = CX1(x(t), ĝ(t), x̂(t))

2) h(t) = CX2(x(t), x(t − 1))

3) x(t + 1) = ER(h(t), e(t))

From the right-hand side of equation 9, the weights for

CX1 are:

w11 = (ω + 1/k)/(1/k + ω + φ1 + φ2)

w12 = φ1/(1/k + ω + φ1 + φ2)

w13 = φ2/(1/k + ω + φ1 + φ2)

where k, ω, φ1 and φ2 are defined as in the simple case.

To determine the weights of CX2 and ER, we can reason

as follows. If we knew x(t + 1), from the left-hand side

of equation 9 the weights to determine e(t) by a convex

combination CX3(x(t), x(t − 1), x(t + 1)) would be:

w31 = (φ1 + φ2)/(1/k + ω + φ1 + φ2)

w32 = ω/(1/k + ω + φ1 + φ2)

w33 = (1/k)/(1/k + ω + φ1 + φ2)

Let us now decompose the convex combination CX3 in

two successive applications of a 2-parental recombination

RX, using the decomposition formula:

CX((a, wa), (b, wb), (c, wc)) = RX((d,wd), (c, wc))

where d = RX((a,wa/(wa + wb)), (b, wb/(wa + wb)))
and wd = wa + wb.

Applying it to CX3, we have:

CX((x(t), w31), (x(t − 1), w32), (x(t + 1), w33)) =
RX1((h,wh), (x(t + 1), w33))

where h = RX2((x(t), w31/(w31 + w32)), (x(t −
1), w32/(w31 + w32))) and wh = w31 + w32

From this decomposition, the weights for h(t) =
CX2(x(t), x(t − 1)) are the same as for RX2:

w21 = w31/(w31 + w32)

w22 = w32/(w31 + w32)

and the weights for x(t + 1) = ER(h(t), e(t)) are the

same as for RX1:

w1 = wh = w31 + w32

w2 = w33

The pseudocode for the IGPSO is given in algorithm 3.

Algorithm 3 Inertial Geometric PSO algorithm

1: for all particle i do

2: initialise position xi at random in the search space

3: end for

4: while stop criteria not met do

5: for all particle i do

6: set personal best x̂i to best position found so far by the particle

7: set global best ĝ to best position found so far by the whole swarm

8: end for

9: for all particle i do

10: update position using a randomized convex combination

11: update position using weighted extension ray

12: end for

13: end while

V. IGPSO FOR THE HAMMING SPACE

In previous work, we have already presented a weighted

convex combination for the Hamming space [6]. This turned

out to be equivalent to a 3-parental uniform crossover for

binary strings. In the following, we derive the weighted

extension ray recombination for the Hamming space.

A. Extension ray in the Hamming space

The extension ray is defined as: C ∈ ER(A, B) iff

C ∈ [A,B] or B ∈ [A,C]. Let us consider an example

of extension ray in the Hamming space. Let A = 110011
and B = 111001.

The relation C ∈ [A,B] is satisfied by those C that match

the schema S1 = 11 ∗ 0 ∗ 1. This is because: (i) this is

the set of the possible offspring of A and B that can be

obtained by recombining them using the uniform crossover,

and (ii) this operator corresponds to the uniform geometric

crossover under Hamming distance which returns offspring

in the segment between parents.

The relation B ∈ [A,C] is satisfied by all those C that

when recombined with A using the uniform crossover can

produce B as offspring. This set, in turn, corresponds to those

C that match S2 = ∗∗1∗0∗, as we explain in the following.

The schema S1 is obtained by keeping the common bits

in A and B and inserting ∗ where the bits of A and B do not

match. The schema S2 is obtained by inserting ∗ where the

bits are common in A and B and inserting the bits coming

from B where the bits of A and B do not match. All C
matching S2 recombined with A can produce B as offspring.

This is because at each position (in A, B and C) when in

the schema S2 there is a star the bit in B at that position can

be inherited from A. When in the schema there is a bit (0
or 1) the bit in B at that position can be inherited from C.

Notice also that only the strings C matching S2 can produce

B when C is recombined with A.

B. Weighted extension ray recombination in the Hamming

space

In a weighted extension ray recombination, we are given

A, B, wab and wbc, and we want to determine C. As

mentioned earlier, we can compute the distance d(B, C) =
d(A,B) · wbc/wab. Then return those points C which are

at a distance d(A, B) + d(B, C) from A and at a distance

d(B,C) from B. Notice that, since in the Hamming space

the maximum distance between two strings in the space is

bounded by n (number of bits), there is an upper-bound to

d(B,C) which has to be (forced to be) ≤ n − d(A, B).
Definition 3: The extension ray recombination of A and B

is as follows. Let us define the probability P = d(B,C)/(n−
d(A,B)). For each position, if A and B have the same bit,

with probability P put the complementary bit in C at that

position. If A and B have different bits, put the bit of B in

C at that position.

Theorem 3: Using this recombination the expected dis-

tance between B and the generated C, E[d(B,C)], over

the distance d(A,B) equals the ratio wbc/wab. Therefore,



this recombination operator fits the geometric definition of

weighted extension ray under Hamming distance.

Proof: This can be shown as follows. The number of

bits in which A and B differ are d(A,B). The number of

bits in which A and B do not differ is n − d(A,B). For

the bits in which A and B differ, the string C equals B. For

each bit in which A and B do not differ, C does not equal B
with probability P . So, the expected distance between B and

C is E[d(B, C)] = (n − d(A,B)) · P . By substituting P =
d(B,C)/(n − d(A,B)), we have E[d(B, C)] = d(B, C) =
d(A,B) · wbc/wab. So, E[d(B,C)]/d(A,B) = wbc/wab.

Notice that the extension ray recombination operator dif-

fers from bitwise mutation with probability P applied to B
in that in the former operator not every bit has probability P
of undergoing mutation (only those bits in which B equals

A). Also, the extension ray recombination differs from a

combined operator of crossover of A and B followed by

a bitwise mutation of the offspring. In particular, the latter

operator may generate offspring beyond A with respect to

B (in the extension ray with origin B and passing through

A). This cannot happen with the extension ray recombination

with origin A and passing through B.

VI. EXPERIMENTS

We implemented the IGPSO algorithm for binary spaces

within a Java framework,2 and investigated its performance

on some benchmark problems. The proposed algorithm was

compared with the GPSO algorithm and with three other

algorithms:

• BPSO: Discrete Binary PSO of Kennedy and Eberhart,

using the results presented in [2].

• GA: A canonical Genetic Algorithm, with roulette

wheel fitness-proportionate selection, uniform crossover

and bitflip mutation.

• ES: A µ + λ Evolution Strategy, with µ = λ =
popsize/2 and bitflip mutation.

For the two latter algorithms, the bitflip mutation works

as follows: each bit in the chromosome is considered, and

with probability p this bit is flipped. In the experiments

involving these algorithms, this parameter was systematically

varied between 0.0 and 0.5 in increments of 0.01. For the

IGPSO experiments, the key parameters ω, φ1 and φ2 were

systematically varied between 0.0 and 2.0 in increments of

0.25. For GPSO, ω and φ1 were varied between 0.0 and 1.0
in increments of 0.1.

In all experiments, the length of any single run was set to

4000 function evaluations, in order to be directly comparable

with the results of Kennedy and Eberhart. For IGPSO, GPSO,

GA and ES the population size was varied systematically:

sizes of 10, 20, 40, 80 and 160 were tried, with the numbers

of generations limited appropriately: 400, 200, 100, 50 and

25.

We used three of the same benchmark problems that

Kennedy and Eberhart tested their algorithm on. These are

William Spears’ binary versions of DeJong’s functions f1,

2Source code is available upon request from the second author.

Algorithm f1 (78.6) f2 (3905.93) f3 (55.0)

GPSO 78.5996 5 3905.9284 2 55.0 20
IGPSO 78.5998 6 3905.9289 2 55.0 20
BPSO - 10 - 4 - 20
GA 78.2152 0 3905.8052 0 52.1 1
ES 78.5998 7 3905.9291 2 55.0 20

TABLE I

RESULTS OF THE EMPIRICAL EXPERIMENTS. THE MAXIMUM OF THE

FUNCTIONS ARE REPORTED NEXT TO THEIR NAMES. FOR EACH

COMBINATION OF ALGORITHM AND PROBLEM, THE RESULTS OF THE

BEST PARAMETERIZATION OF THAT COMBINATION ARE REPORTED. THE

FIRST NUMBER IS THE BEST FITNESS OF THE LAST GENERATION,

AVERAGED OVER 20 RUNS. THE SECOND NUMBER IS THE NUMBER OF

THOSE RUNS THAT REACHED THE GLOBAL OPTIMUM.

GPSO pop/gen mut ω φ1 φ2

f1 80/50 0.2 0.0 0.5 0.5

f2 80/50 0.1 0.5 0.0 0.5

f3 * * * * *

IGPSO pop/gen mut ω φ1 φ2

f1 20/200 N/A 1.75 1.25 0.5

f2 40/100 N/A 1.75 1.25 1.25

f3 * N/A * * *

TABLE II

BEST PARAMETER SETTINGS FOUND FOR GPSO AND IGPSO. THE

ASTERISKS DENOTE THAT MANY COMBINATIONS ARE OPTIMAL.

f2 and f33. (We did not use f4 and f5 due to unresolved

differences between different versions of the code, which

might be due to differing numerical precision in different

systems; further, Kennedy and Eberhart do not report precise

results for f4.)

Each configuration (parameters and population size) was

tested twenty times, and the average best score of each

run was recorded, as well as how many of the runs that

reached the global optimum. The results are summarized in

table I. The parameters were optimized separately for each

combination of benchmark function and algorithm, and only

the results of the best configuration are reported here. The

best parameter settings found are reported in tables II and

III.

The very compressed fitness structure of f1 and f2, with

many local optima with values differing from the global

optimum only in the third decimal, is a very bad match with

fitness-proportional selection; the landscape of f3 has similar

characteristics but to a lesser degree. Therefore, the results

of the GA are by far the worst on all problems.

In comparison, the GA always works best with large

populations and relatively high mutation rates (> 0.1). The

ES seems to be relatively insensitive to population size, as

long as the mutation rate is in the region 0.05–0.1.

The results indicate that GPSO and IGPSO perform very

similarly on the tested problems. From table I we can see

that both algorithms perform similarly to a standard ES,

much better than the GA, and are competitive with BPSO on

3The original c source code of these functions can be found at
http://www.cs.uwyo.edu/ wspears/functs/dejong.c



GA pop/gen mutation

f1 160/25 0.12

f2 160/25 0.16

f3 80/50 0.39

ES pop/gen mutation

f1 10/400 0.13

f2 160/25 0.1

f3 * *

TABLE III

BEST PARAMETER SETTINGS FOUND FOR GA AND ES. THE ASTERISKS

DENOTE THAT MANY COMBINATIONS ARE OPTIMAL.

these particular problems. It is a bit surprising that IGPSO

does not perform better than GPSO, which it is an extension

of. A likely explanation is that GPSO includes a mutation

operator, which IGPSO does not. Mutation might provide

the same exploration benefit as inertia implemented through

movement along the extension ray does (for IGPSO) on these

particular problems; indeed, the most successful parameter

settings found for GPSO includes significant mutation. An-

other part of the explanation might be that the particular

binary encoding that is used in these problems induces a

search space where inertia is of little use. It remains to be

seen whether the benefits of inertia will become clearer when

testing the algorithm on other problems.

VII. CONCLUSION

We have introduced a principled generalization of the

complete standard particle swarm optimization algorithm to

arbitrary spaces: Inertial Geometric Particle Swarm Opti-

mization, or IGPSO. This algorithm extends the previously

proposed GPSO algorithm by also taking inertia into ac-

count, by means of a weighted extension ray. Further, we

have described the construction of such an extension ray

in Hamming space. Initial results of applying IGPSO to

a classic benchmark are promising. In the future, further

studies should be carried out on other benchmark functions,

and in other combinatorial spaces.

REFERENCES

[1] M. Clerc, Discrete particle swarm optimization, illustrated by the trav-

eling salesman problem, New Optimization Techniques in Engineering,
Springer, 2004, pp. 219–239.

[2] J. Kennedy and R. C. Eberhart, A discrete binary version of the

particle swarm algorithm, IEEE Transactions on Systems, Man, and
Cybernetics 5 (1997), 4104–4108.

[3] , Swarm intelligence, Morgan Kaufmann, 2001.
[4] Eugene F. Krause, Taxicab geometry: An adventure in non-euclidean

geometry, Courier Dover Publications, 1986.
[5] A. Moraglio, Towards a geometric unification of evolutionary algo-

rithms, Ph.D. thesis, University of Essex, 2007.
[6] A. Moraglio, C. Di Chio, and R. Poli, Geometric particle swarm

optimization, European Conference on Genetic Programming, 2007,
pp. 125–136.

[7] A. Moraglio, C. Di Chio, J. Togelius, and R. Poli, Geometric particle

swarm optimization, Journal of Artificial Evolution and Applications
2008 (2008), Article ID 143624.

[8] A. Moraglio and R. Poli, Topological interpretation of crossover,
Proceedings of the Genetic and Evolutionary Computation Conference,
2004, pp. 1377–1388.

[9] , Geometric landscape of homologous crossover for syntactic

trees, Proceedings of IEEE congress on evolutionary computation,
2005, pp. 427–434.

[10] , Product geometric crossover, Proceedings of Parallel Problem
Solving from Nature conference, 2006, pp. 1018–1027.

[11] , Topological crossover for the permutation representation,
Journal of the Italian Association for Artificial Intelligence (2007),
(to appear).

[12] A. Moraglio, R. Poli, and R. Seehuus, Geometric crossover for

biological sequences, Proceedings of the European Conference on
Genetic Programming, 2006, pp. 121–132.

[13] A. Moraglio and J. Togelius, Geometric pso for the sudoku puzzle,
Proceedings of the Genetic and Evolutionary Computation Conference,
2007, pp. 118–125.

[14] Y.H. Shi and R.C. Eberhart, A modified particle swarm optimizer, IEEE
International Conference on Evolutionary Computation, 1998.

[15] G. Sywerda, Uniform crossover in genetic algorithms, Proceedings of
the third international conference on Genetic algorithms, 1989.

[16] Julian Togelius, Renzo De Nardi, and Alberto Moraglio, Geometric pso

+ gp = particle swarm programming, Proceedings of the Congress on
Evolutionary Comptutation (CEC), 2008.


