
Progressive Parametric Query Optimization
Pedro Bizarro, Nicolas Bruno, and David J. DeWitt

Abstract—Commercial applications usually rely on precompiled parameterized procedures to interact with a database. Unfortunately,

executing a procedure with a set of parameters different from those used at compilation time may be arbitrarily suboptimal. Parametric

query optimization (PQO) attempts to solve this problem by exhaustively determining the optimal plans at each point of the parameter

space at compile time. However, PQO is likely not cost-effective if the query is executed infrequently or if it is executed with values only

within a subset of the parameter space. In this paper, we propose instead to progressively explore the parameter space and build a

parametric plan during several executions of the same query. We introduce algorithms that, as parametric plans are populated, are

able to frequently bypass the optimizer but still execute optimal or near-optimal plans.

Index Terms—Parametric query optimization, adaptive optimization, selectivity estimation.

Ç

1 INTRODUCTION

IN many applications, the values of runtime parameters of
the system, data, or queries themselves are unknown

when queries are originally optimized. In these scenarios,
there are typically two trivial alternatives to deal with the
optimization and execution of such parameterized queries.
One approach, termed here as Optimize-Always, is to call the
optimizer and generate a new execution plan every time a
new instance of the query is invoked. Another trivial
approach, termed Optimize-Once, is to optimize the query
just once, with some set of parameter values, and reuse the
resulting physical plan for any subsequent set of parameters.
Both approaches have clear disadvantages. Optimize-
Always requires an optimization call for each execution of
a query instance. These optimization calls may be a
significant part of the total query execution time, especially
for simple queries. In addition, Optimize-Always may limit
the number of concurrent queries in the system, as the
optimization process itself may consume too much memory.
On the other hand, Optimize-Once returns a single plan that
is used for all points in the parameter space. The chosen plan
may be arbitrarily suboptimal for parameter values different
from those for which the query was originally optimized.

1.1 Parametric Query Optimization

An alternative to Optimize-Always and Optimize-Once is

Parametric Query Optimization (PQO). At optimization time,

PQO determines a set of plans such that for each point in the

parameter space, there is at least one plan in the set that it is

optimal. The regions of optimality of each plan are also

computed. Later, when an instance of the query is submitted,

PQO chooses the best precomputed plan for the query

instance and executes it without making a new optimization
call. PQO proposals often assume that the cost formulas of
physical plans are linear or piecewise linear with respect to
the cost parameters and that the regions of optimality are
connected and convex. However, in reality, the cost functions
of physical plans and regions of optimality are not so well
behaved. A more important problem results from the fact
that PQO has a much higher start-up cost than optimizing a
query a single time (PQO usually requires several invoca-
tions of the optimizer with different parameters [8], [9]).
When a previously unseen query arrives, it is therefore not
clear to determine whether PQO should be used: it may not
be cost-effective to solve the full PQO problem if the query is
not executed frequently or if it is repeatedly executed with
values covering a small subspace of the entire parameter
space. Most previous work (see Section 6) ignores this
dilemma and instead solves the full PQO problem, poten-
tially wasting more resources than necessary.

1.2 Contributions

In this paper, we propose an alternative approach to handle
parametric queries that addresses the shortcomings de-

scribed above. Our contributions are listed as follows:

. In Section 2, we propose Progressive Parametric Query
Optimization (PPQO), a novel framework to improve
the performance of processing parameterized
queries. We also propose the Parametric Plan (PP)
interface as a way to incorporate PPQO in DBMS.

. In Sections 3 and 4, we propose two implementa-
tions of PPQO with different goals. On one hand,
Bounded has proven optimality guarantees. On the
other hand, Ellipse results in higher hit rates and
better scalability.

. Finally, in Section 5, we present an extensive
performance evaluation of PPQO using a prototype
implementation on Microsoft SQL Server 2005.

2 PROGRESSIVE PARAMETRIC QUERY

OPTIMIZATION

The main idea of PPQO is to incrementally solve (or
approximate) the solution to the PQO problem as successive

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009 1

. P. Bizarro is with the CISUC/DEI, University of Coimbra, DEI—Polo 2,
3030-290 Coimbra, Portugal. E-mail: bizarro@dei.uc.pt.

. N. Bruno is with Microsoft Research, One Microsoft Way, Redmond, WA
98052. E-mail: nicolasb@microsoft.com.

. D.J. DeWitt is with the University of Wisconsin, Madison, 1210 W.
Dayton Street, Madison, WI 53706. E-mail: dewitt@cs.wisc.edu.

Manuscript received 13 Nov. 2007; revised 9 May 2008; accepted 17 July
2008; published online 25 July 2008.
Recommended for acceptance by S. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-11-0559.
Digital Object Identifier no. 10.1109/TKDE.2008.160.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

query execution calls are submitted to the DBMS. Fig. 1
shows a high-level architecture of our approach. Given a
query and its parameter values, a traditional optimizer
returns the optimal execution plan along with its estimated
cost (�1 and �2 in the figure). In contrast, a PPQO-enabled
optimizer introduces a data structure called PP, which
incrementally maintains plans and optimality regions,
allowing us to reuse work across optimizations. As the PP
data structure becomes populated, it is possible to
completely bypass the optimization process without hurt-
ing the quality of the resulting execution plans.

When a new instance of a parametric query arrives (�3 in
Fig. 1), PPQO tries to obtain an optimal (or near-optimal)
plan by consulting the PP data structure. If it is successful, it
returns such plan, and a full optimization call is avoided (�4
in Fig. 1). Otherwise, it makes an optimization call (�5 in
Fig. 1), and both the resulting optimal plan and cost are
added to the PP for future use (�6 in Fig. 1). Due to the size of
the parameter space, PPs should not be implemented as exact
lookup caches of plans because there would be too many
“cache misses.” Also, due to the nonlinear and discontinuous
nature of cost functions, PPs should not be implemented as
nearest neighbor lookup structures as there will be no
guarantee that the optimal plan of the nearest neighbor is
optimal or close to optimal for the point in the parameter
space being considered [3], [16]. We now describe the PPQO
problem in more detail, borrowing notation and definitions
from the classic parametric optimization problem.

2.1 Definitions and Preliminaries

A parametric query Q is a text representation of a relational
query with placeholders for m parameters vpt ¼
ðv1; . . . ; vmÞ. Vector vpt is called a ValuePoint. Examples of
parameter values are system parameters (e.g., available
memory) and query-dependant parameters (e.g., constants
in parametric predicates). In the rest of the paper, we focus
on query-dependant parameters since they cover the most
common scenarios. We note, however, that our techniques
can also be adapted to other kinds of parameters.

Using vpt directly to model the parameter space and
characterize regions of optimality for plans is in general
difficult (see below for an example). To address this problem,
we use a transformation function ’, which is optimizer

specific and transforms ValuePoints into what we call
CostPoints. A CostPoint is a vector cpt ¼ ðc1; . . . ; cnÞ, where
each ci is a cost parameter with an ordered domain. A well-
known implementation of ’, which we justify below and use
in the rest of the paper, is transforming parametric predicate
values into the corresponding predicate selectivities. For
instance, consider predicate age < X, with parameter X.
Function ’would then map a specific constant c for X into
the selectivity of the nonparametric predicate age < c.

Let p be some execution plan that evaluates query Q for a
given vpt. The cost function of p, denoted pðcptÞ, takes a
CostPoint cpt as an input and returns the cost of evaluating
plan p under cpt. For every legal value of the parameters,
there is some plan that is optimal. Given a parametric
query Q, the maximum parametric set of plans (MPSP) is the
set of plans, each of which is optimal for some point in the
n-dimensional cost-based parameter space. The region of
optimality for plan p, denoted rðpÞ, is defined as

rðpÞ ¼ ðt1; . . . ; tnÞ j p is optimal at ðc1 ¼ t1; . . . ; cn ¼ tnÞf g:

Finally, a parametric optimal set of plans (POSP) is a
minimal subset of MPSP that includes at least one optimal
plan for each point in the parameter space.

Having introduced this basic terminology, we next
justify the need for the transformation function ’ and then
define the PPQO framework in detail.

2.2 The Parameter Transformation Function ’

Recall that a value parameter refers to an input value of the
parametric SQL query to execute. On the other hand, a cost
parameter is an input parameter in the formulas used by the
optimizer to estimate the cost of a query plan. Cost
parameters are estimated during query optimization from
value parameters and from information in the database
catalog. (Physical characteristics that affect the cost of plans
but do not depend on query parameters, such as the
average tuple size or the cost of a random I/O, are
considered physical constants instead of cost parameters.)

A crucial cost parameter that is used during optimization
is the estimated number of tuples in (intermediate) relations
processed by the query plan: most query plans have cost
formulas that are monotonic in the number of tuples
processed by the query. On the other hand, there is no
obvious relationship between the value parameters and the
cost of the query plans. Thus, it becomes much easier to
characterize the regions of optimality using a cost-based
parameter space than using a value-based parameter space.
In Example 1 below and in what follows, we use a cost-
based parameter space whose dimensions are predicate
selectivities. (Note that the estimated number of tuples of
each relation processed by a query is typically derived from
selectivities of subexpressions computed during query
optimization.)

Example 1. Table FRESHMEN(NAME, AGE) succinctly de-
scribes first-year graduate students. The age distribution
of students is showed in Fig. 2. Consider queries of the
following form:

SELECT *

FROM FRESHMEN

WHERE AGE=X OR AGE=Y

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 1. Using PPs to process a query.

Assume that the optimal plan for queries that retrieve
less than 5 percent of FRESHMEN tuples is PIDX, a plan
using an index on column AGE. For all other queries,
the optimal plan is PFS, a full-table scan on FRESHMEN.
The parameters of this query can be represented as the
absolute values used for parameters X and Y or as
the selectivities of predicate age ¼ X and predicate
age ¼ Y. Accordingly, the costs of physical PIDX and
PFS can be represented in value-based parameter spaces,
shown in Fig. 3, or in selectivity-based (also referred to as
cost-based) parameter spaces, shown in Fig. 4. Clearly,
the selectivity-based representation results in a much
more manageable parameter space than the (seemingly
chaotic) value-based representation. The reason is that
selectivity-based representations are better aligned to the
optimizer cost model and tend to be represented by
monotonic cost functions, and therefore, the regions of
optimality of plans tend to cluster together.

In the rest of this paper, we assume that function ’ takes
query Q and its SQL parameters, vpt, and returns cpt as a
vector of selectivities. Computing the selectivities in cpt
corresponds to the task of selectivity estimation, a subroutine
inside of query optimization. Other components of query
optimization—e.g., plan enumeration, rule transformation,
and costing—need not be part of the implementation of
function ’. In general, computing selectivity values from
actual values is done by manipulating in-memory histo-
grams, which is very efficient, and a negligible fraction of
the full query optimization task.

We note that the arity of the value-based parameter
space and that of the selectivity-based parameter space are
not necessarily the same. On one hand, it is possible to have
predicates of the form age > X and age < Y, where two
value predicates are collapsed into a single selectivity value
for the combined predicate. Similarly, a query that contains

a predicate of the form R:age < X and also a join between
tables R and S might require two selectivity parameters to
capture the optimizer’s cost model: one for the selectivity of
the predicate on the base table and another for the
selectivity of the predicate on the join. In our prototype
and experimental evaluation, we use a simple one-to-one
mapping between parametric predicates and selectivity
values (i.e., we do not consider join predicates nor combine
atomic predicates over the same column). The reasons
behind our choice are the following: 1) this is the mapping
used in previous work on parametric optimization, 2) it can
be implemented without deep knowledge about the under-
lying query optimizer, and 3) our experiments show that
this simple model is very competitive.

2.3 The Parametric Plan Interface

We now give an operational description of the PP
component of PPQO by describing its two main operations
(also see Fig. 1):

. addPlanðQ; cpt; p; cÞ. This operation registers that
plan p, with estimated cost c, is optimal for query Q
at CostPoint cpt.

. getPlanðQ; cptÞ. This operation returns the plan
that should be used for query Q and cost values cpt
or returns null if no plan is considered good
enough for Q.

Implementations of the PP interface are used during
query processing, as shown in Fig. 1 and in the pseudocode
in Fig. 5. When parametric query parameter instances are
required to execute, the DBMS calls the PP’s getPlan
method. If getPlan returns plan p1, then p1 is used for
execution, and an optimization call is avoided. If getPlan
returns null (we call this situation a getPlan miss), then the
optimizer is called, and a potentially new plan, p2, is obtained
from the optimizer. Plan p2 is then executed. The parameter

BIZARRO ET AL.: PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 3

Fig. 2. Age distribution in table FRESHMEN.

Fig. 3. Value-based parameter space.

Fig. 4. Selectivity-based parameter space.

Fig. 5. Using PPs.

values, plan p2, and its cost are then added to the PP using
addPlan.

As we show in Sections 3 and 4, the PP interface can be
used to implement various PPQO policies. However, it can
also implement simple policies like Optimize-Always and
Optimize-Once. Fig. 6 shows the Optimize-Always implemen-
tation of the PP interface, in which addPlan is empty and
getPlan always returns null, forcing an optimization for
every query. Fig. 7 shows the Optimize-Once implementa-
tion of the PP interface, in which addPlan saves the first plan
it is given as input and getPlan returns such plan in all
subsequent calls.

2.4 Parametrics Plans: Requirements and Goals

The main trade-off in PPQO is to avoid as many optimiza-
tion calls as possible as long as we are willing to execute
suboptimal—but close to optimal—plans (note that this goal
has also been proposed in [5] and [11] in the context of
classical PQO). Thus, PP implementations must obey the
Inference Requirement below.

Inference Requirement. After a number of addPlan calls,
there must be cases where getPlan returns an (near-)optimal
plan p for query Q and parameter point cpt, even if
addPlanðQ; cpt; p; costÞ was never called.

Given a sequence of execution requests of the same
query with potentially different input parameters, PPQO
has therefore two conflicting goals:

. Goal 1. Minimize the number of optimization calls.

. Goal 2. Execute plans with costs as close to the cost
of the optimal plan as possible.

Consider a trivial cache implementation of the PP
interface, which stores ðQ; cptÞ pairs as the lookup key
and ðp; costÞ as the inserted value. This implementation
cannot fulfill the inference requirement because it would
return hits only for previously inserted ðQ; cptÞ pairs. In the
next sections, we propose two PPQO implementations, each
giving priority to one of the above goals. Bounded-PPQO,

described in Section 3, gives priority to Goal 2. Ellipse-

PPQO, described in Section 4, gives priority to Goal 1.

3 THE BOUNDED-PPQO IMPLEMENTATION

We now describe the first of two proposed PPQO
implementations, termed Bounded-PPQO or simply
Bounded. This implementation provides guarantees on the
quality of the plans returned by getPlanðQ; cptÞ, thus
focusing on Goal 2 of PPQO (see previous section). Either
the returned plan p is null (and an optimization call cannot
be avoided) or p has a cost guaranteed to be within a user-
specified bound of the cost of the optimal plan. Specifically,
the cost of plan p returned by getNext is guaranteed to be
bounded by OptCost�M þA, where OptCost is the cost of
the optimal plan, and M � 1 and A � 0 are user-defined
constants. Both M and A can be used to specify different
bounds on suboptimality and are generally application

specific. (We report, however, the effects of varying
parameters M and A in Section 5.)

The intuition for the Bounded-PPQO implementation is
given as follows: Consider a parametric query with two
parameters. If plans pi and pj are optimal in some CostPoints

cpti and cptj, which delimit a box as shown in the two-
dimensional example in Fig. 8, then we can provably bound
the cost of plan pj in all points within that box if the cost
functions are monotonic along all dimensions (e.g., if the
cost of the query increases whenever the selectivity of any
parameter increases). Specifically, the cost of plan pj in the
box will be between the cost of plan pi at cpti and the cost of
plan pj at cptj.

3.1 Preliminaries

We now introduce some definitions required to describe the
Bounded-PPQO implementation:

. Relationship equal ð�Þ. Given cpt1 ¼ ðc1;1; . . . ; c1;nÞ and
cpt2 ¼ ðc2;1; . . . ; c2;nÞ, cpt1 � cpt2 iff 8i c1;i ¼ c2;i.

. Relationships below () and above (). Given cpt1 ¼
ðc1;1; . . . ; c1;nÞ a n d cpt2 ¼ ðc2;1; . . . ; c2;nÞ, ,
() i f f 8i c1;i � c2;i ðc1;i � c2;iÞ, a n d 9i,
c1;i 6¼ c2;i. Note that both and are transitive. That
is, if () and (), then

().
. Opt(cpt). It is the cost of an optimal plan at cpt.
. Bounding pair. Triples ti ¼ ðcpti; plani; costiÞ and

tj ¼ ðcptj; planj; costjÞ are a bounding pair if plan
planiðplanjÞ is an optimal plan at cptiðcptjÞ with cost
costiðcostjÞ, , and

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 6. Optimize-Always implementation.

Fig. 7. Optimize-Once implementation.

Fig. 8. Overview of Bounded-PPQO.

planiðcptiÞ � planjðcptjÞ � planiðcptiÞ�M þA;

where M and A are, respectively, any user-defined
multiplicative and additive factors, with M � 1 and
A � 0. The pair ðti; tjÞ is also said to bound cpt if

.

We additionally rely on the intuitive Monotonic Assumption
(or MA), stated as follows: given plan p and CostPoints cpt1
and cpt2, if , then pðcpt1Þ � pðcpt2Þ.1

3.2 Implementation of addPlan for Bounded

Function addPlanðQ; cpt; p; costÞ, shown in Fig. 9, associates
with each parametric query Q a list TQ of triples ðcpt; p; costÞ
ordered by cost, where p is an optimal plan at cpt with an
estimated execution cost (at cpt) of cost ¼ pðcptÞ.

3.3 Implementation of getPlan for Bounded

For user-defined constants M � 1 and A � 0, Bounded’s
getP lanðQ; cptÞ searches for a pair ti ¼ ðcpti; plani; costiÞ and
tj ¼ ðcptj; planj; costjÞ that bounds cpt (i.e., with costi �
costj � costi �M þA and with). If it finds no
such bounding pair, getPlan returns null. Otherwise, it
returns such plan (see Fig. 10 for a high-level description).

We next show that if getPlan returns plan p, it guarantees
under the MA that the cost of executing p at cpt satisfies
OptðcptÞ � pðcptÞ � OptðcptÞ�M þA. We first show in
Lemma 1 that if the MA holds for every plan considered,
then the cost of the optimal plan at any point (regardless of
what the optimal plan is at any single point) also increases
monotonically with the parameters.

Lemma 1. If , cost1 ¼ p1ðcpt1Þ ¼ Optðcpt1Þ, and
cost2 ¼ p2ðcpt2Þ ¼ Optðcpt2Þ, then cost1 � cost2.

Proof. We note that if p2 is optimal at cpt1, then
cost1 ¼ p2ðcpt1Þ. Otherwise, p2 is not optimal at cpt1, and
therefore, cost1 < p2ðcpt1Þ. In any case, we have that
cost1 � p2ðcpt1Þ, which, coupled with the MA and

, implies that p2ðcpt1Þ � p2ðcpt2Þ ¼ cost2. Putting
the last two inequalities together, we obtain
cost1 � cost2. tu

Lemma 2. If M � 1, costx � costz � costx �M þA, and
costx � costy � costz, then costy � costz � costy �M þA.

Proof. Since M � 1 and costx � costy, it follows that
costx

�M þA � costy �M þA. Also, since costx�costz�
costx

�M þA, it follows that costz � costx �M þA �
costy

�M þA. Finally, since costx � costy � costz, it fol-
lows that costy � costz � costy �M þA. tu

Finally, Theorem 1 establishes our desired result.

T h e o r e m 1 . I f ti ¼ ðcpti; plani; costiÞ a n d tj ¼
ðcptj; planj; costjÞ are a bounding pair for some M � 1 and
A � 0, then under the MA, the cost of planj can be tightly
bounded such that OptðcptÞ�planjðcptÞ�OptðcptÞ �M þA
for all cpt such that .

Proof. By Lemma 1 and , it follows that costi �
OptðcptÞ � costj. Also, by Lemma 2 and costi � costj �
costi

�MþA, we get OptðcptÞ�costj�OptðcptÞ �MþA. tu

Example 2. For some query Q, assume that addPlan was
already called for the points (and associated triples) shown
in Fig. 11 (i.e., assume that the PP stores information about
the optimal plans and costs for the triples in
TQ ¼ ðt1; t2; t3; t4; t5; t6; t7Þ). Given cpt (shown as a black
circle) in the cost-based parameter space, M ¼ 1:5, and
A ¼ 0, which plan would getPlanðQ; cptÞ return? There
are six pairs ðcpti; cptjÞ such that : ðcpt1; cpt6Þ,
ðcpt1; cpt7Þ, ðcpt3; cpt5Þ, ðcpt3; cpt6Þ, and ðcpt3; cpt7Þ. From
those pairs, only two triples bound cpt: pair ðt3; t5Þ, because
c3 � c5 � c3

�1:5þ 0() 6 � 8 � 9, a n d p a i r ðt3; t6Þ,
because c3 � c6 � c3

�1:5þ 0() 6 � 9 � 9. Thus, either
plan p5 and plan p6 can be safely returned by getPlan.

3.4 Efficient Implementation of getPlan

The naı̈ve implementation of getPlan in Fig. 10 enumerates
all pairs of tuples ðti; tjÞ 2 TQ � TQ, ti 6¼ tj, that were
introduced by addPlan and tests if any pair bounds cpt. If
some pair ðti; tjÞ bounds cpt, then plan pj can be returned as

BIZARRO ET AL.: PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 5

Fig. 9. Bounded’s addPlan implementation.

Fig. 10. Bounded’s getPlan implementation.

Fig. 11. TQ ¼ ðt1; t2; t3; t4; t5; t6; t7Þ.

1. All cost parameters we use are selectivities. Since higher selectivities
imply more tuples to process, the MA follows the intuition that plans that
process more tuples likely cost more than plans that process less tuples.
Although not true for all queries—e.g., queries using SQL clause NOT
EXISTS may have nonmonotonic costs—plans with nonmonotonic costs are
less common than plans with costs monotonic with the number of
processed tuples.

the answer to getPlan. The complexity of this procedure is
clearly quadratic in the size of TQ. To avoid the enumeration
of all of pairs of triples that have to be checked, we apply an
optimization that allows us to choose a single pair of triples
ðt1; t2Þ to be checked.

Definition ((below) and (above) operators).
Given a list, TQ, of k triples ðcpti; pi; costiÞ ordered by costi, with
i ¼ 0; . . . ; k� 1, where cpti is a CostPoint, and costi represents
the cost of executing the optimal plan pi at cpti, and given cpt,
another CostPoint, we define the following operations:

1. is the list of triples ðcpti; pi; costiÞ from TQ
ordered by costi such that .

2. is the list of triples ðcpti; pi; costiÞ from TQ
ordered by costi such that .

Example 3. Let TQ ¼ ðt1; t2; t3; t4; t5; t6; t7Þ be triples shown
in a two-dimensional cost-based parameter space in
Fig. 11. Then, (the triples in the light gray
area), and (the triples in the dark gray
area).

As shown in Example 2 in the previous section, there is
potentially more than one solution to getP lanðQ; cptÞ. We
next show that if there is a solution, we only need to check if
costlast � costfirst � costlast �M þA, where cfirst is the cost
of the first triple in , and clast is the cost of the last
triple in . Then, in such situation, the plan in the first
triple of , pfirst, is returned. Theorem 2 proves the
correctness of this approach.

T h e o r e m 2 . I f 9cptb : tb ¼ ðcptb; pb; costbÞ, ,
9cpta : ta¼ðcpta; pa; costaÞ, , and costb � costa �
costb

� M þA, then costlast � costfirst � costlast �M þA,
where costfirst is the cost of the first triple in , and
costlast is the cost of the last triple in .

Proof. By definition, the CostPoint of any triple that
belongs to the below list is below the CostPoint of
any triple that belongs to the above list. Formally,

and , we have that
. Then, by Lemma 1, we have that

costb � costlast � OptðcptÞ � costfirst � costa. By costb �
costa � costb �M þA and Lemma 2, it follows that
costlast � costa � costlast �M þA. A l s o , i f costx �
costz � costx �M þA and costx � costy � costz, then
costx � costy � costx �M þA. Putting all together, it
follows that costlast � costfirst � costlast �M þA. tu

The optimized implementation of getPlan is shown in
Fig. 12. We can see that given the properties of and

, it is possible to select a single triple t1 from
and a single triple t2 from such that only pair ðt1; t2Þ
needs to be checked. Note that the implementation of
getPlan in Fig. 12 makes at most a single pass over TQ;
thus, it has OðjTQjÞ time complexity, where jTQj is the
number of elements in TQ. (Note that the search condition
depends on multiple attribute values—the cost parame-
ters—and therefore, more sophisticated search procedures
such as binary search are not applicable.) Before addPlan is

called for the first time, any getPlan call returns null. As
new triples are added, the hit rate of getPlan is expected to
increase. Intuitively, as more triples are added, the more
likely it is that getPlan returns a plan because it is more
likely that any two triples fulfill the requirements of
Theorem 2. Note also that the lower the values of M and
A, the less likely it is to find pairs of triples that fulfill the
requirements of Theorem 2, and thus, more added triples
are needed to obtain higher hit rates.

4 THE ELLIPSE-PPQO IMPLEMENTATION

Bounded’s getPlan provides strong guarantees on the cost of
plans returned. However, we expect low hit rates of
Bounded’s getPlan for small values of M and A or before
Bounded’s TQ has been populated. In this section, we
propose the Ellipse-PPQO (or simply Ellipse) implementa-
tion of the PP interface, designed to address Goal 1 in
Section 2.2 (i.e., having high hit rates). For that purpose,
Ellipse’s getPlan returns �-acceptable plans rather than
guaranteed near-optimal costs.

Definition (�-acceptable plans). For � 2 ½0; 1	, if plan p is
known to be optimal at points cpt1 and cpt2 in the cost-based
parameter space, then plan p is �-acceptable at point cpt in the
cost-based parameter space if and only if

kcpt1 � cpt2k
kcpt� cpt1k þ kcpt� cpt2k

� �;

where kp� qk is the euclidean distance between p and q.

It follows from the definition of �-acceptable that if p is
optimal at cpt1 and cpt2, then p is 1-acceptable only on points
between cpt1 and cpt2 and p is 0-acceptable at all points. Note
that in a two-dimensional space, the area where p is
�-acceptable is equivalent to the definition of an ellipse; if
p is optimal for cpt1 and cpt2, then p is �-acceptable at cpt if
cpt is on or inside an ellipse of foci cpt1 and cpt2 such that the
distance between the foci, kcpt1 � cpt2k, over the sum of
the distances between cpt and the foci, kcpt� cpt1k þ
kcpt� cpt2k, is at least �. Fig. 13 shows the areas where p is
0.5-acceptable, 0.8-acceptable, and 1-acceptable if p is optimal
at cpt1 and cpt2.

Ellipse-PPQO encodes the heuristic that if a plan p is
optimal in two points cpt1 and cpt2, then p is likely to be
optimal or near-optimal in a convex region that encloses
cpt1 and cpt2. Note that a nearest neighbor algorithm could

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 12. Bounded’s getPlan implementation.

be used as an alternative to Ellipse-PPQO. However, since
regions of optimality are frequently long and narrow [16],
for any given cpt point, the closest known plan could very
well be from another region of optimality (which we
verified in practice). In addition, �-acceptable areas can
easily encode both small and large regions of optimality.

4.1 Implementation of addPlan for Ellipse

The implementation of addPlan for Ellipse proceeds as
follows: For each query Q and for each plan p that is optimal
in some point of the parameter space, Ellipse’s
addPlanðQ; cpt; p; costÞ essentially maintains a list of
ðcpt; costÞ pairs, where p is optimal for Q (see Fig. 14).

4.2 Implementation of getPlan for Ellipse

Ellipse’s getPlan (see Fig. 15) consists in the following. For
each optimal plan p, it iterates over pairs of points where p
is optimal for the given query, Q. For each pair of points
ðcpt1; cpt2Þ, it tests if p is �-acceptable at the given point cpt.
If it is, getPlan returns p; otherwise, getPlan keeps trying
other points and plans. If all pairs of plans for Q are
exhausted without a �-acceptable plan being found, getPlan
returns null. Note that we return the first �-acceptable plan,
and therefore, getPlan depends on the order on which
points are enumerated. Instead of returning the first match,
we can consider all �-acceptable plans and return the one
with the largest distance from �, which might improve the
quality of the resulting plans at the cost of a slower
implementation of getPlan.

5 EXPERIMENTAL EVALUATION

In this section, we report an experimental evaluation of
PPQO using Microsoft SQL Server 2005. The client applica-
tion implements the pseudocode described in Sections 3
and 4, and Microsoft SQL Server is used to obtain estimated
optimal plans and estimated costs of plans.

5.1 Data Set, Metrics, and Setup

The TPC-H benchmark [17] was used to evaluate the PPQO
implementations. Table 1 shows which tables are joined by
each query. The tables are lineitem (L), orders (O), customer
(C), supplier (S), part (P), partsupp (T), nation (N), and
region (R).

As in the work of Reddy and Haritsa [16] and unless
otherwise noted, we added two extra selections to the
TPC-H queries to more easily explore the parameter
space (see Section 5.7 for experiments with more than two
selection predicates). The two selections are of the form
coli � vali, i ¼ 1, 2, where for each query, coli is one of
the two columns shown in Table 1, and vali is a random
value from the domain of the column.

For each query tested, we generated 10,000 random val1
and val2 values. (A ðval1; val2Þ pair is a ValuePoint.) To
guarantee that random parameter values uniformly explore
the parameter space, we altered the values in the columns
subject to the extra selections to such that those values are
uniformly distributed in their domains instead of using the
nonuniform TPC-H generated distributions.

For each query and each ValuePoint vpt, we make a
getPlan lookup call (see Fig. 5), where PP is either Optimize-
Once, Optimize-Always, Bounded, or Ellipse. If getPlan
returns a plan, we call it a hit and check if the plan is
optimal; if it is not optimal, we check how its estimated cost
compares with the estimated optimal cost. These give rise to
the following metrics:

. HitRate. This metric refers to the fraction of getPlan
calls that return a plan.

. OptRate. This metric refers to the percentage of
plans that are optimal.

. SO. This metric refers to the measure of suboptim-
ality: phitðcptÞ=OptðcptÞ, with phit ¼ getPlanðQ; cptÞ.
SO � 1.

BIZARRO ET AL.: PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 7

Fig. 13. Areas where p is �-acceptable.

Fig. 14. Ellipse’s addPlan implementation.

Fig. 15. Ellipse’s getPlan implementation.

TABLE 1
Description of TPC-H Queries Used

. AvgSO. This metric refers to the average of all SO
values.

. MaxSO. This metric refers to the maximum of all SO
values and reflects how risky a PP implementation
can be.

. Number of points. This metric refers to the number
of ðcpt; plan; costÞ triples stored in a ParametricPlan
(i.e., number of misses).

. Number of plans. This metric refers to the number
of distinct optimal plans.

. QP. This metric refers to the number of queries
processed.

The experiments were run on a lightly loaded Pentium M at
1.73 GHz with 1 Gbyte of RAM and using TPC-H scale
factor 1. Indexes and statistics were built on all columns
subject to selections and on all primary and foreign key
columns. To estimate the cost of suboptimal plans returned
by PPQO, each suboptimal plan was forcibly cost by SQL
Server [13]. Unless otherwise stated, Bounded used M ¼ 1:1
and A ¼ 0, and Ellipse used � ¼ 0:95.

5.2 Variation on HitRate and OptRate

The first experiment consisted of processing queries using
10,000 different random ValuePoints (value vectors) for
each query and observing how HitRate and OptRate
varied for Bounded and Ellipse. This experiment was
performed for the five TPC-H queries listed in Table 1,
and the results for three are shown in Figs. 16, 17, and 18.
Several trends can be observed:

. Ellipse always has a higher HitRate than Bounded.

. Except for Query 8 (more on this below), Bounded
always has a higher OptRate than Ellipse.

. HitRate converges quickly, but OptRate converges
slightly faster.

. HitRate monotonically increases as a function of QP
(more processed queries imply more misses, and
each miss adds information to the ParametricPlan,
therefore increasing the likelihood of future hits).

. OptRate naturally varies up and down, as the initial
random ðcpt; plan; costÞ triples are added to the
ParametricPlan object, until it converges.

5.3 Number of Plans and of Points, Space, and Time

Fig. 19 shows the number of plans and the number of points
for the experiments of the previous section. Bounded has a
higher number of plans and number of points because it has
a lower HitRate; for every miss, there will be a new point
stored in the ParametricPlan object.

Storing the number of plans and the number of points
took only between
600 Kbytes to
1,300 Kbytes using the
original uncompressed XML plan representations provided
by SQL Server. Storing zip-compressed XML plans instead
would decrease the size of the plan representation by a
factor of 10. (Plans do not need to be understood, zipped, or
unzipped by addPlan or getPlan functions.)

Fig. 20 reports the time and space taken by the Bounded
and Ellipse approaches during optimization. Time (in
seconds) includes the time elapsed during optimization (if
there is a miss), during addPlan, and during getPlan but not
the execution time nor the time consumed by function ’.
For comparison purposes, the time taken for Optimize-Once
and Optimize-Always is also included.

After 10,000 queries have been processed, Optimize-
Always took between 5.2 and 13.6 times longer than
Bounded and between 10.7 and 18.5 times longer than
Ellipse. Thus, although Bounded only used between 7 percent
and 20 percent of the optimization time, it still returned plans

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 16. HitRate and OptRate for Query 7.

Fig. 17. HitRate and OptRate for Query 8.

Fig. 18. HitRate and OptRate for Query 21.

Fig. 19. Number of plans and points for 10,000 QP.

Fig. 20. Optimization time and space for 10,000 QP.

that were, as shown in Section 5.4, on the average just
1 percent more costly than the optimal plan. Ellipse used
between 5 percent and 9 percent of the optimization time and
returned plans that were 6 percent more costly than the
optimal plan. Ellipse was always faster than Bounded
because it had less optimize and addPlan calls (due to higher
HitRates) and faster getPlan calls (because it has less
information stored in its PPs).

Note that although Optimize-Once spends the least
optimization time, it is not the best overall approach (as
seen in Fig. 24). In fact, the entire PQO research area
aims to overcome the performance problems of using
Optimize-Once.

5.4 Quality of Returned Plans

The quality of the returned plans is described in this
section. The suboptimality of each plan returned by
Bounded, Ellipse, and Optimize-Once was measured in
the same experiments of the previous two sections.

Figs. 21, 22, and 23 show the quality of the returned plans
(hits) for Bounded, Ellipse, and Optimize-Once in the form
of cumulative distributions. The x-axis represents how
much the cost of a returned plan is above optimal, and the
y-axis represents the cumulative percentage of plans that
correspond to that suboptimality level. For example, about
77 percent of the plans returned by Bounded for Query 7 are
within 1 percent of the cost of optimal, and 99.9 percent are
within 10 percent the cost of optimal. The quality of most
plans returned by Ellipse and Bounded is very good, and
the quality of the plans returned by Bounded is higher.

To complete the picture, Fig. 24 shows the average and
maximum suboptimality for the three policies and five
queries. While both Bounded and Ellipse have very good
average cases, Ellipse can have as bad worse cases as
Optimize-Once (but less frequently). Overall, Bounded’s
most suboptimal plan was five times worse than the
optimal plan, while the most suboptimal plan chosen by

both Ellipse and Optimize-Once was 412 times more costly
than the optimal plan (MaxSO graph in Fig. 24).

An interesting observation is that although Bounded
(with M ¼ 1:1) is supposedly guaranteed to return plans no
more than 110 percent the cost of the optimal plan, in some
experiments, that guarantee was violated. Indeed, for
queries 7, 8, 9, and 21, the most suboptimal plan returned
by Bounded was, respectively, 155 percent, 499 percent,
172 percent, and 177 percent the cost of the corresponding
optimal plan. Further analysis showed that the problem lied
with the tool that forces plans and that obtains the
estimated cost of those plans. In some very rare cases, for
a specific CostPoint cpt, the tool returned a plan, say, p1 with
cost c1 at cpt, as if it was optimal, but some other plan, say,
p2, had an estimated cost c2 at cpt lower than c1. This led to
two problems: 1) Bounded stored plans and costs in its data
structures that were not optimal, and 2) the costs of the
(presumed) optimal plan appeared nonmonotonic. Other
than those very rare occasions, Bounded guaranteed its
suboptimality specifications. (Arguably, this issue affected
Ellipse less because the Ellipse implementation does not
rely on monotonic cost functions.)

Another surprise was how well Optimize-Once did in
the AvgSO metric. On the average, across all queries,
Optimize-Once returned plans with costs
140 percent the
cost of optimal (the same average was
101 percent for
Bounded and
106 percent for Ellipse). One possible
explanation is the following. Optimize-Once obtains the
optimal plan for the first of the 10,000 random parameter
values and reuses that plan for all other values. If that first
plan is also the plan with less cost variation in the plan
space, then there is a high chance that that plan will do well
in many other points in the space. Consider Fig. 25, which
shows a conceptual representation of the costs of four
different plans, each optimal in different regions of the
parametric space.

Executing either plan p3 or plan p4 for all points of the
parameter space would yield costs, on the average, not

BIZARRO ET AL.: PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 9

Fig. 21. Quality of returned plans (Q7).

Fig. 22. Quality of returned plans (Q9).

Fig. 23. Quality of returned plans (Q21).

Fig. 24. MaxSO and AvgSO.

much higher than the cost of the optimal. Coincidentally,
the likelihood that any given point lies in the space where
either p3 or p4 are optimal is very high, and thus, by random
chance, Optimize-Once is likely to use a plan that is not
catastrophic. However, Optimize-Once can and will return
catastrophic plans eventually. We will explore this issue
further in Section 5.6—Vary Query Order.

5.5 Vary Bounded’s M and Ellipse’s �

In this experiment, the value M of Bounded was varied
from 1.1 to 3 for Query 21. The values of OptRate and
HitRate are shown in Figs. 26 and 27. As expected, a lower
value for M (tighter optimality bound) results in a higher
OptRate (because returned plans cannot be much worse
than the corresponding optimal plans due to the tight
optimality bound M) but a lower HitRate (because tight
values of M result in small regions with quality guarantees,
and therefore, a larger number of calls do not return any
plan). Because the HitRate for M ¼ 1:5 is already so close to
100 percent (Fig. 27), increasing M to 3 barely improves
HitRate or change OptRate much. Alternatively, it could
have resulted in a small change in HitRate but a larger
change in OptRate (as it does not happen, there might be a

correlation between HitRate and OptRate in this scenario).
The same Query 21 with the same random parameter values
was run using Ellipse while varying � from 0.9 to 0.99 (see
Figs. 28 and 29). As expected, a higher � results in a higher
OptRate but a lower HitRate (the reasons are similar to
those above). Due to space constraints, we do not report
experiments varying Bounded’s A parameter. (The results,
however, were similar to the ones for M, i.e., larger values
of A increase HitRate and decrease OptRate.)

5.6 Vary Query Order

This experiment assessed the impact of the order of the
incoming queries on the performance of the algorithms. The
same 10,000 random values used for Query 21 were used
again, but the order in which those 10,000 queries were
processed was chosen randomly. Six random orders were
generated and processed with Bounded ðM ¼ 1:1; A ¼ 0Þ,
Ellipse ð� ¼ 0:9Þ, and Optimize-Once.

The results are shown in Figs. 30, 31, 32, and 33 and
summarized in Table 2. Note that in Figs. 30, 31, 32, and 33, it
is not possible to tell apart which line is which. That is
precisely the point: except for Ellipse’s OptRate, query order
essentially had no effect on the values of HitRate or OptRate.

Note that although query order had no impact on the
final values of Bounded’s OptRate, Bounded’s HitRate, and

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 26. OptRate for Bounded, vary M, Q21.

Fig. 25. Typical costs of optimal plans.

Fig. 27. HitRate for Bounded, vary M, Q21.

Fig. 28. OptRate for Ellipse, vary �, Q21.

Fig. 29. HitRate for Ellipse, vary �, Q21.

Fig. 30. HitRate for Bounded, vary query order, Q21.

Fig. 31. OptRate for Bounded, vary query order, Q21.

Fig. 32. HitRate for Ellipse, vary query order, Q21.

Ellipse’s HitRate, query order did have a medium impact
on the final value of Ellipse’s OptRate.

On the other hand, for Optimize-Once, query order had a

very significant impact on OptRate, with final values
ranging from 3 percent to 48 percent. An interesting
observation is that the performance of Optimize-Once was
exactly the same for four out of those six random orders.

Further analysis showed that although the very first value
of each of the six random orders was different, for four of
them, the corresponding optimal plan was the same. This
follows the observation (Section 5.4, Fig. 25, and [16]) that
some plans have very large optimality areas.

5.7 Vary the Number of Dimensions

In all the experiments so far, the parameter space was two-
dimensional. The next experiment varies the number of

dimensions, from one to four. Query 8 is used (with extra
parametric selections as needed) because it was the one with
the highest number of plans and, thus, more likely to suffer
from the “curse of dimensionality”: an exponential growth
of complexity with a linear increase in the number of

dimensions. The query was then run for 10,000 random
values for Bounded ðM ¼ 1:1; A ¼ 0Þ and Ellipse ð� ¼ 0:95Þ.

The results, shown in Figs. 34, 35, 36, and 37, are
summarized in Table 3.

It is clear that the more dimensions the parameter space
has, the lower the OptRate and HitRate are. Some of the
reasons that contribute to this effect are twofold. First, given
a point cpt centered in the middle of the parameter space, the
percentage of space (or) decreases exponentially
with the number of dimensions (affects Bounded). That is,
the larger the number of dimensions, the less likely it is that
any two random points are above or below some other point.
For example, for a one-dimensional space, 50 percent of
space is below (above) the midpoint. For two-dimensional,
25 percent of the parameter space is below (above) the
midpoint (12.5 percent for three-dimensional and

6 percent for four-dimensional). Fig. 38 shows the number
of plans and points for Bounded. Second, the number of
unique optimal plans increases exponentially with the
dimensionality of the parameter space. This issue affects
Ellipse because this approach relies on finding two close-by
points where the same plan is optimal. Fig. 39 shows the
number of plans and points for Ellipse.

The number of plans and points increase exponentially
for both Ellipse and Bounded, but it is slower for Ellipse.

BIZARRO ET AL.: PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 11

Fig. 33. OptRate for Ellipse, vary query order, Q21.

TABLE 2
Effects of Different Query Orders

Fig. 34. Vary dimensions, HitRate for Bounded, Q8.

Fig. 35. Vary dimensions, OptRate for Bounded, Q8.

Fig. 36. Vary dimensions, HitRate for Ellipse, Q8.

Fig. 37. Vary dimensions, OptRate for Ellipse, Q8.

TABLE 3
Variation of the Number of Dimensions

Fig. 38. Number of plans and points, Bounded, Q8.

For each of the experiments above (which use one, two,
three, and four cost parameters), the returned plans were
on the average 7 percent, 8 percent, 45 percent, and
35 percent, respectively, more expensive than the optimal
plans when using Ellipse and 0.2 percent, 2 percent,
24 percent, and 10 percent, respectively, more expensive
than the optimal plans when using Bounded (not shown in
the graphs).

6 RELATED WORK

PQO was first mentioned by Graefe and Ward [7] and
Lohman [12]. This pioneering early work also proposed
dynamic query plans and a new metaoperator, the choose-plan
[7]. Dynamic query plans include more than one physical
plan choice. The plan to use is determined at runtime by the
choose-plan operator after it costs the alternatives given the
now known parameter values. How to enumerate dynamic
query plans was proposed only later [2] with the concept of
incomparability of costs: in the presence of unbound
parameters at optimization time, plan costs are represented
as intervals, and if intervals of alternative plans overlap,
none is pruned. At runtime, when parameters are bound to
values, the choose-plan selects the right plan. This
approach may enumerate a large number of plans (see
[15]), and all those plans may have to be recost at runtime.
Ioannidis et al. [10] coined the term PQO and proposed
using randomized algorithms to optimize in parallel the
parametric query for all possible values of unknown
variables. This approach is unfeasible for continuous
parameters, gives no guarantees on finding the optimal
plan for a query, and places no bounds on the optimality of
the plans produced. Ganguly [5] uses a geometric approach
to solve the PQO problem for one and two parameters
under the assumption that cost functions are linear and that
regions of optimality of plans are convex. Ganguly solves
PQO for restricted forms of nonlinear one-parameter cost
functions. Prasad [14] extends the geometric approach to
solve PQO for ternary linear cost functions and binary
nonlinear functions. Hulgeri and Sudarshan [8] propose a
solution to PQO that handles piecewise linear cost functions
for an arbitrarily number of parameters but requires
substantial changes to the query optimizer. AniPQO [9] is
a recent technique that approximates the solution to PQO
for nonlinear functions and for an arbitrary number
of parameters. AniPQO approximates optimality regions
to n-dimensional polytopes and finds its solution to PQO by
calling the optimizer multiple times and evaluating plan
costs up to thousands of times. Unlike AniPQO, PPQO
never calls the optimizer or costs plans more often than
what a traditional non-PQO approach would.

A closely related piece of work is PLASTIC [6]. Like
PPQO, PLASTIC incrementally maintains clusters of in-

coming queries and avoids optimizing a new query if it is
“close enough” to a previously seen cluster. At a high level,
we can see PLASTIC as an instance of PPQO, where getPlan
compares an incoming query against each of the previously
saved ones and reuses an old query plan if it is “close
enough” to the current query, and addPlan adds a plan as a
new cluster representative. In contrast to Bounded and
Ellipse, query similarity in PLASTIC is measured as a
distance between feature vectors that describe the queries
(such as the number of relations in the query, the number
and type of predicates, and estimated sizes of tables and
intermediate relations). For that reason, PLASTIC has the
potential to detect similarities between queries with similar
structure but touching different tables (like “SELECT R.a

FROM R JOIN S” and “SELECT T.b FROM T JOIN U”). In
our work, we do not attempt to reuse plans across different
queries, so a direct implementation of PLASTIC would
always compare instances of the same query with different
parameters. As a consequence, the distance metric between
queries would result in the sum of differences in the cost
parameters, and PLASTIC would reduce to performing
nearest neighbor searches on the parameter space with a
threshold that determines when a new cluster should be
created. As such, PLASTIC cannot give worst case quality
guarantees on the resulting plans (as Bounded does) nor is
able to model long and narrow optimality regions (as
Ellipse does). It is, however, an interesting implementation
of PPQO that might be useful in certain scenarios.

Finally, the recent work in [16] coins the term “plan
diagram” to denote a pictorial enumeration of the execution
plan choices of a query optimizer over the selectivity space.
This work shows, using plan diagrams, that assumptions
commonly held by PQO (plan convexity, plan uniqueness,
and plan homogeneity) do not hold. These discoveries do
not affect Bounded-PPQO, which provides optimality
guarantees. On the other hand, Ellipse-PPQO results in
higher hit rates but gives no optimality guarantees on
returned plans and may produce poor results for large
�-acceptable regions. Very recently, in a follow-up to [16],
the authors propose to reduce the plan diagram for a given
query by “collapsing” plans whose costs are close enough to
each other [3]. This work shares with ours the notion that in
many cases, obtaining near-optimal plans is sufficient and
might lead to dramatic reductions in the number of plans to
consider without sacrificing the quality of the optimization
process. A crucial difference with our work is that [3]
proceeds a posteriori, after optimizing the input query for
all possible parameters (specifically, over a fine grid that is
laid out over the parameter space). In contrast, PPQO is to
progressively build a PP data structure with no long start-
up costs.

7 CONCLUSIONS

Before PPQO, processing parameterized queries was an all-
or-nothing approach: either the optimizer explores all the
parameter space and computes the full PQO solution
(traditional PQO) or it relies on luck and uses the very first
plan it gets for a query. PPQO is able to progressively
construct information about the parametric space and
approximate optimality regions, being able to bypass the
optimizer up to 99 percent of the times, while still returning
plans within 5 percent of the cost-optimal plan for
99 percent of the cases. Unlike PQO, PPQO does not
perform extra optimizer calls or extra plan-cost evaluation
calls. At execution time, PPQO selects which plan to execute

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 39. Number of plans and points, Ellipse, Q8.

by using only the input cost parameters without recosting
plans. PPQO is an adaptive technique that works prior to
execution (and assumes the optimizer to be correct—just
like any other PQO approach). Query reoptimization [11]
and other adaptive query processing (AQP) approaches [1],
[4] work during optimization and execution and assume
that the optimizer can make mistakes or that the system
characteristics change significantly during the execution of
a single query. Also, PPQO is an interquery adaptive
approach, while AQP are frequently intraquery optimiza-
tion approaches.

PPQO is also amenable to be implemented in a complex
commercial database system as it requires no changes in the
optimization or execution processes. In fact, our PPQO
prototype ran outside the DBMS server. For technical
reasons, we did not implement function ’ ourselves but
instead used SQL Server’s cost model to transform value
into cost parameters. For that reason, we did not evaluate
the impact of such function in our experimental evaluation.
However, it is important to note that function ’ can be
implemented by simply manipulating in memory histo-
grams (i.e., 200-int arrays), which is a negligible fraction of
optimization time and would not have resulted in any
noticeable difference in our experimental evaluation.

PPQO was evaluated in a variety of settings, with queries

joining up to eight tables, with multiple subqueries, up to

four parameters, and in plan spaces with close to

400 different optimal plans. PPQO yielded good results in

all scenarios except for the Bounded algorithm in complex

queries using a four-dimensional parameter space. How-

ever, even in this challenging scenario, Ellipse on the

average executed plans just 3 percent more costly than the

optimal, while avoiding 87 percent of all optimization calls.

REFERENCES

[1] S. Babu and P. Bizarro, “Adaptive Query Processing in the
Looking Glass,” Proc. Second Biennial Conf. Innovative Data Systems
Research (CIDR), 2005.

[2] R.L. Cole and G. Graefe, “Optimization of Dynamic Query
Evaluation Plans,” Proc. ACM SIGMOD, 1994.

[3] D. Harish, P. Darera, and J. Haritsa, “On the Production of
Anorexic Plan Diagrams,” Proc. 33rd Int’l Conf. Very Large Data
Bases (VLDB), 2007.

[4] A. Deshpande, Z. Ives, and V. Raman, “Adaptive Query
Processing,” Foundations and Trends in Databases, vol. 1, no. 1,
pp. 1-140, 2007.

[5] S. Ganguly, “Design and Analysis of Parametric Query Optimiza-
tion Algorithms,” Proc. 24th Int’l Conf. Very Large Data Bases
(VLDB), 1998.

[6] A. Ghosh, J. Parikh, V.S. Sengar, and J.R. Haritsa, “Plan Selection
Based on Query Clustering,” Proc. 28th Int’l Conf. Very Large Data
Bases (VLDB), 2002.

[7] G. Graefe and K. Ward, “Dynamic Query Evaluation Plans,” Proc.
ACM SIGMOD, 1989.

[8] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for
Linear and Piecewise Linear Cost Functions,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB), 2002.

[9] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-Intrusive
Parametric Query Optimization for Nonlinear Cost Functions,”
Proc. 28th Int’l Conf. Very Large Data Bases (VLDB), 2003.

[10] Y.E. Ioannidis, R.T. Ng, K. Shim, and T.K. Sellis, “Parametric
Query Optimization,” Proc. 18th Int’l Conf. Very Large Data Bases
(VLDB), 1992.

[11] N. Kabra and D.J. DeWitt, “Efficient Mid-Query Re-Optimization
of Sub-Optimal Query Execution Plans,” Proc. ACM SIGMOD,
1998.

[12] G.M. Lohman, “Is Query Optimization a “Solved” Problem?”
Proc. Workshop Database Query Optimization, Oregon Graduate
Center Technical Report 89-005, 1989.

[13] Microsoft Corp., “Plan Forcing Scenario: Create a Plan Guide
That Uses a USE PLAN Query Hint,” SQL Server 2005 Books
Online, 2005.

[14] V.G.V. Prasad, “Parametric Query Optimization: A Geometric
Approach,” MSc thesis, IIT, Kampur, 1999.

[15] S.V.U. Maheswara Rao, “Parametric Query Optimization: A
Non-Geometric Approach,” master’s thesis, IIT, Kampur, 1999.

[16] N. Reddy and J.R. Haritsa, “Analyzing Plan Diagrams of Database
Query Optimizers,” Proc. 31st Int’l Conf. Very Large Data Bases
(VLDB), 2005.

[17] Transaction Processing Performance Council, The TPC-H Bench-
mark, http://www.tpc.org/, accessed, Mar. 2006.

Pedro Bizarro received the PhD degree from
the University of Wisconsin, Madison, in 2006.
He is an assistant professor in the CISUC/DEI,
University of Coimbra, Coimbra, Portugal. His
research interests include adaptivity and query
processing, stream systems, event processing
systems, distributed systems, and benchmark-
ing and performance. He is a Marie Curie
fellow (under the European Union FP6 research
grants), and he is leading the BiCEP—Bench

marking Complex Event Processing Systems—research project.

Nicolas Bruno received the BS degree in
computer science from the School of Mathe-
matics, Astronomy and Physics (FaMAF),
Argentina, in 1998 and the PhD degree in
computer science from Columbia University,
New York, in 2003. He is currently a researcher
in the Data Management, Exploration and
Mining Group (DMX), Microsoft Research,
Redmond, Washington. His research interests
are in self-tuning database systems and query

processing and optimization.

David J. DeWitt received the PhD degree from
the University of Michigan in 1976. He joined the
Computer Sciences Department, University of
Wisconsin, Madison, in September 1976, where
he served as the department chair from July
1999 to July 2004. He held the title John P.
Morgridge Professor of Computer Sciences
when he retired from the University of Wisconsin
and joined Microsoft as a technical fellow in
2008. He received the 1995 SIGMOD Innova-

tions Award for his contributions to the database systems field. He has
authored more than 120 technical publications and served on numerous
program committees and US National Science Foundation (NSF)
Review Panels. He was a member of the NSF CISE Advisor Committee
from 2000 to 2003 and the CSTB from 2005 to 2007 and has served on
several NRC and DARPA study panels. He was the program chair of the
1983 SIGMOD Conference, a program cochair of the 1988 VLDB
Conference, and the general chair of the 2002 SIGMOD Conference. He
is a member of the National Academy of Engineering (1998), a fellow of
the American Academy of Arts and Sciences (2007), and a fellow of the
ACM (1995).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BIZARRO ET AL.: PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 13

