

NOTE: This is a preliminary release of an article accepted by the ACM
Transactions on Modeling and Computer Simulation. The definitive version is
currently in production at ACM and, when released, will supersede this version.
Copyright (C) 2003 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or direct commercial advantage and that copies show this
notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in
other works, requires prior specific permission and/or a fee. Permissions may be
requested from:
Publications Dept, ACM Inc.,
1515 Broadway, New York, NY 10036
USA
Fax +1 (212) 869-0481, or permissions@acm.org.

Dynamic Structure Multi-Paradigm Modeling
and Simulation
FERNANDO J. BARROS1
Universidade de Coimbra

__

This paper presents the Heterogeneous Flow System Specification (HFSS), a formalism aimed to represent
hierarchical and modular hybrid flow systems with dynamic structure. The concept of hybrid flow systems
provides a generalization of the conventional concept of hybrid system and it can represent a whole plethora of
systems, namely: discrete event systems, multi-component and multirate numerical methods, multirate and
multi-component sampling systems, event locators and time-varying systems. The ability to join all these types
of models makes HFSS an excellent framework for merging components built in different paradigms. We
present several examples of model definition in the HFSS formalism and we also exploit the ability of the HFSS
formalism to represent mutirate numerical integrators.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Modeling Theory
General Terms: Design, Experimentation, Performance
Additional Key Words and Phrases: Dynamic Structure systems, hybrid systems, multirate sampling, variable
step integration
__

1. INTRODUCTION

Hybrid systems are commonly defined as systems exhibiting both continuous and

discrete behavior. While discontinuities are represented by discrete event systems, the

continuous behavior is usually described by differential equations. There has been an

intense research in these types of systems and examples can be found in [Alur et.al.

2001], [Antsaklis 2000], [Barros 2002a], [Branicky and Mattson 1997].

Although differential equations are widely used for representing continuous systems,

they are not exclusive; for example, control and signal areas use a representation based

on sampling. Besides the traditional approaches based on single rate sampling, there has

been research on multirate systems. Numerical methods for solving differential equations

1 Author's address: Departamento de Engenharia Informática, Universidade de Coimbra, Pólo II, PT-3030
Coimbra, Portugal. Email: barros@dei.uc.pt.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2003 ACM 1073-0516/01/0300-0034 $5.00

also rely on sampling, and multirate integration has been subject of research [Engstler

and Lubich 1997], [Howe 1998].

To achieve an unified representation of all these types of systems we have developed

the Heterogeneous Flow System Specification (HFSS)[Barros 2002a]. This formalism

relies on time-varying and multi-component sampling for providing a common

representation of all kinds of continuous systems in digital computers. Multirate

numerical methods for solving differential equations can also be represented in the HFSS

formalism. This formalism also provides support for discrete event systems and event

detection. The HFSS formalism provides thus, a unified framework for representing

digital control, signal processing, numerical integration and hybrid systems. Because all

these types of systems share the same underlying representation, they can be arbitrarily

connected to build complex models.

In addition, the HFSS formalism offers the ability to represent systems with a time-

varying structure. Examples of these types of systems include mobile agent systems

[Barros 2001] and switching systems [Barros 2003].

To simplify the specification of systems of Ordinary Differential Equations (ODEs)

we present the Differential Equation Discrete Flow System Specification (DEDF)

formalism that is aimed to directly represent hybrid systems described by ODEs and

discontinuities. This formalism can encode multirate integration methods.

 Traditional modeling formalisms for continuous or hybrid systems are based on ideal

representation of continuous signals. These modeling approaches are based on analogue

or hybrid state machines that have a counterpart in analogue and hybrid computers.

Examples include modeling formalisms for differential equations [Zeigler 1976] and for

hybrid systems [Praehofer 1991]. These modeling approaches while being powerful

abstractions for describing systems, do not provide the necessary constructs to represent

continuous systems in digital computers. Or in other terms, we can say that these

approaches are pure modeling formalisms in opposition to modeling and simulation

formalisms. A different situation occurs in the discrete event field where modeling and

simulation formalisms, like the DEVS formalism [Zeigler 1976], were earlier created

providing not only modeling constructs but also their representation in digital computers.

The simulation relationship was formalized in the realm of discrete event systems by the

concept of abstract simulator [Zeigler 1984], a construct to extract model dynamic

behavior.

Recently there has been a growing interest in developing modeling and simulation

formalisms to represent hybrid systems in digital computers [Barros 2002a], [Zeigler and

Lee 1998]. These formalisms permit to discuss the efficiency of the numerical simulators

that represent continuous variables, and also, and perhaps more importantly, they enable

model interoperability. This last characteristic cannot be discussed in the realm of pure

modeling formalisms. The realization of pure modeling formalisms is made in an ad hoc

basis. This casuistic implementation renders impossible to achieve model interoperability

for there is no universal underlying discrete state machine that supports their

implementation. This is particularly pertinent when events detectors need to be used

[Praehofer 1991].

While implementation of discrete state machines in digital computers is a trivial task,

the implementation of continuous systems in digital computers has proven to be a

challenging one. Actually, the opposite situation would probably arise if today computers

were analog. In this case continuous systems would have a trivial implementation while

discrete event systems would need some kind of, albeit non trivial, approximation. This

situation has changed with the creation of the Continuous Flow System Specification

(CFSS) [Barros 2002b], that has established the use of multicomponent and multirate

sampling for representing continuous signals.

The unification of sampled based systems with discrete event systems was made by

the HFSS formalism [Barros 2002a] that has introduced a new paradigm for simulating

hybrid systems in digital computers. Although sampling, especially single-rate sampling,

has been extensively used in many fields like control and signal processing, a unified

modeling formalism has not been created before. The HFSS provides sounds semantics

for representing and simulating discrete and continuous signals on digital computers. For

example, it is possible to describe numerical integrators as part of the formalism and not

as an external construct that needs to be incorporated into a pure modeling formalism so

it can be realizable in a digital computer. HFSS precise semantics enable the

interoperability of hybrid systems in a similar manner existing for discrete systems.

To illustrate the use of the HFSS we present examples of hybrid systems with both

static and time-varying structure modeled in the CHAOSTALK environment, a Smalltalk

implementation of the HFSS formalism.

2. HETEROGENEOUS FLOW SYSTEMS

The Heterogeneous Flow System Specification (HFSS) is a formalism intended to

represent piecewise constant partial state systems that accept and produce both

continuous and discrete input flows. The HFSS achieves the representation of continuous

flow systems based on sampling [Barros 2002a]. Discrete event representation is based

on the DEVS formalism [Zeigler 1976]. The HFSS formalism can be used as a basis for

the representation of numerical integration methods aimed to solve differential equations,

as we shown in the Section 2.3.

2.1. HFSS Basic Model

A Heterogeneous Flow System Specification (HFSS) is defined by

HFSS = (X,Y,S,ρ,τ,q0,δ,Λc,λ)

where

X = Xc × Xd is the set of input flow values

Xc is the set of continuous input flow values

Xd is the set of discrete input flow values

Y = Yc × Yd is the set of output flow values

Yc is the set of continuous output flow values

Yd is the set of discrete output flow values

S is the set of partial states (p-states)

ρ : S → R0
+ is the time to input function

τ : S → R0
+ is the time to output function

Q = {(s,e)| s ∈ S, 0 ≤ e ≤ ν (s) } is the state set and

 ν (s) = min{ρ (s),τ (s)} is the time to transition function

q0 = (s0,e0) ∈ Q, is the initial state

δ : Q × (Xc × Xd
φ) → S is the transition function

where

 Xd
φ = Xd ∪ {φ} and

 φ represents the absence of value

Λc: Q → Yc is the continuous output function

λ : S → Yd
φ is the partial discrete output function

The discrete output function, Λd: Q → Yd
φ, is defined by

 λ(s) if e = τ (s)

 Λd(s,e) =

 φ otherwise

The output function, Λ: Q → Yc × Yd
φ, is defined by

 Λ(q) = (Λc(q),Λd(q))

Figure 1 represents typical trajectories of a HFSS component. At time t0 the component is

in state (s0,e0) when it receives a discrete input xd0.

R

Xc

S

e

s0

s1=δ (s0,e0,(xc0,xd0))
•

Yc

e0

ν (s0)=ρ(s0)
•

• xc0

•

•

ρ(s3)
ν (s2)=τ(s2)=ρ(s2)

0

s2=δ(s1,ν (s1),(xc1,φ))

s3=δ (s2,ν (s2),(xc2,xd2))

ν (s1)=ρ(s1)
•

•

Yd
φ

φ

t0

• λ(s3)

t1 t2
Xd

φ

φ
φ

•

t3

s4=δ(s3,ν (s3),(xc3,φ))

•
τ(s0)

τ(s1)

•
ν (s3)=τ(s3)

• ρ(s4)

ν (s4)=τ(s4)

•

•
xc1 •

xc2 •
xc3

•
xd0

•
xd2

Q

Λc(s1,0)

Λc(s0,e0)
•

• • •

•

λ(s2)•

Figure 1. HFSS trajectories.

It changes then to the p-state s1 = δ(s0,e0,(xc0,xd0)). During the interval ρ(s1) no discrete

input arrives, and at time t1 = t0 + ρ(s1) the system changes to p-state s2 =

δ(s1,ρ(s1),(xc1,φ)), where xc1 is the value of the continuous flow at time t1. At p-state s2 the

time to input function is equal to the time to output function and the time to transition is

schedule to time t2 = t1 + ν (s2). During this interval there is no discrete flow but at the end

of the interval arrives the discrete value xd2. The component changes at time t2 to p-state

s3 = δ(s2,ν(s2),(xc2,xd2)). The time to transition function is now equal to the time to input

function. The component is schedule to change at time t3 = t2 + τ (s3). The component

changes then to p-state s4 = δ(s3,τ (s3),(xc3,φ)) because there is no discrete flow. The

continuous output is always defined whereas the discrete output is only non-null a times

t2 and t3, when the elapsed time equals the time to output function δ .

The HFSS provides a general framework for modeling arbitrary hybrid flow systems

in digital computers, that contrarily to analog computers, have can only deal with a

representation based on piecewise constant p-states. The simulation of HFSS basic

models can be made using the abstract simulator described in [Barros 2002c].

Example 1. Triangular wave generator. Consider a triangular wave generator that

produces discrete outputs at wave extreme values. The generator is described by four

parameters: maximum value (vMax), minimum value (vMin); time to reach the maximum

value (tUp) and time to reach the minimum value (tDown). This generator can be

described by

T = (X,Y,S,ρ,τ,q0,δ,Λc,λ)
where

X = {} × {}

Y = R × R

S = {(phase,beta,vMin,vMax,tUp,tDown) |

phase ∈ {#down, #up};

vMin, vMax ∈ R;

beta, tUp, tDown ∈ R+} and vMin < vMax

ρ (phase,beta,vMin,vMax,tUp,tDown) = ∞

τ (phase,beta,vMin,vMax,tUp,tDown) = beta

q0 = ((#down,down,min,max,up,down),0)

δ((#down,beta,vMin,vMax,tUp,tDown),e,(φ,φ)) =

(#up,tUp,vMin,vMax,tUp,tDown)

δ((#up,beta,vMin,vMax,tUp,tDown),e,(φ,φ)) =

(#down,tDown,vMin,vMax,tUp,tDown)

Λc((#down,beta,vMin,vMax,tUp,tDown),e) =

vMax + e(vMin − vMax)/tDown

Λc((#up,beta,vMin,vMax,tUp,tDown),e) =

vMin + e(vMax − vMin)/tUp

λ (#down,beta,vMin,vMax,tUp,tDown) = vMin

λ (#up,beta,vMin,vMax,tUp,tDown) = vMax

Figure 2 represents generator output trajectories for the parameters set in the initial state

q0. Generator initial value is max and its initial phase is #down. During time down

generator continuous output flow decreases from max to min. At the end of the down time

interval the discrete output of value min is produced. The component then changes its

phase to #up and during time up it produces a linear increasing output value. At the end

of this interval the discrete output value max is produced.

 phase

e

Yc

Yd
φ

φ

#down
#up

max

min

min

max

up down

R

Figure 2. Triangular wave generator trajectories.

The continuous output flow of the generator is the triangular wave and the discrete output

flow corresponds to the extreme values of the wave. Every component connected to this

generator can sample the triangular wave at their own sampling rate, for the generator

output is continuous, whereas they all receive the information of wave extremes values

conveyed by the generator.

Example 2. Proportional Controller. A first order proportional controller with a fixed

sampling rate of R seconds can be described by the structure

P = (X,Y,S,ρ,τ,q0,δ,Λc,λ)

where

X = R × {}

Y = R × R

S = {(phase,r,x1,x0) | phase ∈ {#run,#out}; r ∈ R+; x1, x0 ∈ R}

ρ (phase,r,x1,x0) = r

τ (#out,r,x1,x0) = 0

τ (#run,r,x1,x0) = ∞

q0 = ((#run,R,0,0),R)

δ((#run,r,x1,x0),e,x) = (#out,r,x0,x)

δ((#out,r,x1,x0),e,_) = (#run,r,x1,x0)

Λc((r,x1,x0),e) = x0 + e × (x0 − x1) / r

λ (phase,r,x1,x0) = x0

The controller is a hybrid system that receives continuous input flows and produces both

continuous and discrete output flows. It samples the input at every time interval specified

by variable r and it keeps the current and the past input values at variables x0 and x1,

respectively. The output is piecewise linear and it is computed from the previous two

samples. When a new sample is read the new control level does generally correspond to

the predicted control level, and a discontinuity at the output signal occurs. Thus the

controller sends a discrete flow to signal the discontinuity. Hybrid integrators connected

to the controller use this signal to perform correct computations over discontinuities.

For simplicity we have considered that the proportional factor equals to the unit. We have

also simplified controller initial conditions considering current and past values of the

controller to be zero.

From the example it is evident that changes in the sampling rate can be trivially

achieved by changing variable r within the transition function.

2.2. HFSS Network Model

HFSS networks are an arbitrary composition of HFSS components. Hierarchical

composition is a key to represent complex systems by allowing a representation based on

small components that can be independently developed and tested [Barros 1998]. Time-

varying structure systems are also better represented by dynamic structure models. In this

case dynamic structure models offer a more intuitive representation of reality for they are

able to mimic the dynamic creation and destruction of entities, and the dynamic nature of

the relationship existing among entities within a system [Barros 1997]. Formally, a

Heterogeneous Flow System Specification Network is a 4-tuple

HFNN = (XN,YN,η,Mη)
where

N is the network name

XN = XcN × XdN is the set of input flow values

XcN is the set of continuous input flow values

XdN is the set of discrete input flow values

YN = YcN × YdN is the set of output flow values

YcN is the set of continuous output flow values

YdN is the set of discrete output flow values

η is the name of the dynamic structure network executive

Mη is the model of the executive η

The model of the executive is a modified HFSS, defined by

Mη = (Xη,Yη,Sη,γ,Σ*,ρη,τη,q0,η,δη,Λcη,λη)

where

Σ* is the set of network structures

γ: Qη → Σ* is the structure function

The network structure Σj,e ∈ Σ*, corresponding to the state (sj,η,e) ∈ Qη, is given by the 4-

tuple

Σj,e = γ(sj,η,e) = (Dj,{Mi,j,e},{Ii,j},{Zi,j,e})

where

Dj is the set of component names associated with the executive state qj,η

for all i ∈ Dj

Mi,j,e is the model of component i

 Ii,j is the set of components influencers of i

 Zi,j,e is the input function of component i

For simplicity we assume here that the models and input functions do not change with

executive elapsed time e. Thus Mi,j,e = Mi,j, Zi,j,e = Zi,j, and γ: Sη → Σ*. An example of a

continuous variation of the input function is described in [Barros 2000].

These variables are subject to the following constraints for every sj,η ∈ Sη:

η ∉ Dj

N ∉ IN,j

Mi,j = (Xi,j,Yi,j,Si,ρi,τ i,q0,i,δ i,j,Λci,jλ i,j) is a basic HFSS model, for all i ∈ Dj, with

 δi,j: Qi × (Xci,j × Xd
φ
i,j) → Si

ZN,j:
k∈
×
IN,j

Yk,j → YN

Zi,j:
k
×
∈Ii ,j

 Vk,j → Xi,j, for all i ∈ Dj ∪ {η}

where

 Yk,j if k ≠ N

 Vk,j =

 XN if j = N

The equivalence between HFSS networks and atomic models is established in [Barros

2002a]. The abstract simulator for HFSS networks can be found in [Barros 2002c].

2.3. Differential Equation/Discrete Flow System Specification (DEDF)

The HFSS formalism provides a general framework for representing systems with both

discrete and continuous input/output flows. The formalism provides a direct

representation of systems based on sampling, and it is well suited for representing digital

control and digital signal systems. However, such a direct representation can be

cumbersome when specifying ODEs. The HFSS formalism can be used as a framework

to create other formalisms to represent ODEs with discontinuities. These systems are

commonly known as hybrid or combined systems. We create the Differential

Equation/Discrete Flow System Specification (DEDF) to describe hybrid systems using a

combination of ODEs and discrete event systems. Although the DEDF can be reduced to

the HFSS formalism, it allows a direct representation of ODEs, thus it offers a more

friendly syntax for specifying some type of systems. For simplicity we describe a 1st

order version of the DEDF formalism. However, higher order methods can be developed.

A DEDF is defined by

DEDF = (X,Y,Sd,ρ,τ ,q0,δ d,f,λ)

where

X = Xc × Xd is the set of input flow values

Xc ⊆ R, is the set of continuous input flow values

Xd is the set of discrete input flow values

Y = Yc × Yd is the set of output flow values

Yc ⊆ R, is the set of continuous output flow values

Yd is the set of discrete output flow values

Sd is the set of discrete partial states

S = Xc × Yc × Sd is the set of partial states

ρ : S → R0
+ is the time to input function

τ : S → R0
+ is the time to output function

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ min{ρ (s),τ (s)}} is the state set

q0 = (s0,e0) ∈ Q, is the initial state

δ d: Q × (Xc × Xd
φ) → S is the discrete transition function

f: Xc × Yc → Yc is the derivative function

λ : S → Yd
φ is the partial discrete output function

We consider that both input and output continuous flows are based on the set of real

numbers R. This is not a limitation for the ultimate goal is to use multirate methods

where each variable is independently integrated. An extension to vectors of variables in

Rn would be straightforward.

The time to transition function is used to compute the time to read the next input

when no discrete values occur. Due to the modularity of the formalism each model can

have its own time to transition function and thus its own integration time step [Barros

2000]. The discrete transition changes the model p-state in the presence of

discontinuities. For combining DEDF and HFSS models we need to establish their

equivalence. A DEDF = (X,Y,Sd,ρ,τ ,q0,δ d,f,λ) is equivalent to the HFSS =

(X,Y,S,ρ,τ,q0,δ,Λc,λ), where

S = Xc × Yc × Sd

The continuous output function just assumes a linear interpolation and is given by

Λc((x,y,s),e) = y + e.f(x,y)

The transition function uses first order Euler integration method for updating continuous

values and it is defined by

δ((x,y,s),e,(xc,xd)) = δ d((xc,y + e.f(x,y),s),e,(xc,xd))

Since DEDF models can be reduced to HFSS models, both types of models can be

arbitrarily connected.

The creation of formalisms to represent other numerical methods, like an adaptive

step size 3rd order method used later in this paper, can be made within the HFSS

paradigm that offers, thus, a framework for mutirate numerical integration.

3. HYBRID SYSTEMS

Hybrid systems are commonly defined as systems ruled by ordinary differential equations

(ODEs) except at points when states variables change abruptly. They can thus be viewed

as a combination of ODEs and discrete event systems. Many types of hybrid systems

have been described in the literature [Alur et.al. 2001], [Antsaklis 2000], [Barros 2002a],

[Branicky and Mattson 1997], [Deshpande et. al. 1997], [Praehofer 1991]. To illustrate

the HFSS representation of hybrid systems we consider a simple system composed by a

bouncing ball confined to a 1-dimensional moving elevator of 2.5 m height. The ball is

launched from a height of 0.4 m relative to the elevator ground, and with a null velocity

relative to the ground. The ball bounces every time it reaches the elevator limits and it

looses part of the relative velocity in every collision. The ball and elevator coordinate

system is represented in Figure 3 where ve and ye represent elevator velocity and position

relative to he ground and vb and yb represent ball velocity and position relative to the

ground.

y ybye

ve

vb

Figure 3. Ball and elevator coordinate system.

The ball can hit the elevator in two positions: ground and ceiling. For modeling these

collisions we use two detectors one for each type. The ground collision is defined as:

D1 ≡ ye – yb = 0

For an elevator with 2.5 m height the collision with the ceiling is defined by

D2 ≡ ye – yb – 2.5 = 0

Before collision the relative velocity is given by

vr = ve – vb

After a collision the elevator velocity remains the same but the relative velocity is given

by

v'r = ve – v'b = –k vr

where v'b represents the ball velocity after the collision and k, 0 < k ≤ 1, models the loss of

relative velocity due to the collision. After collision ball velocity is thus given by

v'b = (1 + k) ve – k vb

The HFSS model of the collision component is given by

C = (X,Y,S,ρ,τ,q0,δ,Λc,λ)

where

X = R2 × {#detect}

Y = {φ} × R

S = {(phase,k,out) | phase ∈ {#run,#out}; k ∈ R+; out ∈ R}

ρ (phase,k,out) = ∞

τ (#out,k,out) = 0

τ (#run,k,out) = ∞

q0 = ((#run,k = 0.95,φ),0)

δ((#run,k,out),e,(<vb,ve>,d)) = (#out,k,(1 + k) × ve – k × vb)

δ((#out,k,out),e,_) = (#run,k,φ)

Λc((phase,k,out),e) = φ

λ (phase,k,out) = out

The collision receives a pair of input values corresponding to the ball and elevator

velocity and the additional value d from one of the detectors.

The ball is a free fall body whose position is given by

yb'' = −g

where g = 9.807 m/s2 is the standard gravity acceleration at Earth’s surface. The elevator

position is given by

ye = y0 + ∫ve dt

where y0 is the elevator initial position and ve is the elevator velocity considered here to

be a known function and. Figure 4 represents the HFSS model of the ball-elevator

system.

∫VB ∫YB Z∫YBZ∫VB

D1

VE ∫YE Z∫YE

C ZC

ZD1

D2 ZD2

Figure 4. Bouncing ball and elevator block diagram.

All the elements in the block diagram have an HFSS equivalent. Integrators are based on

a DEDF like formalism that implements a 3rd order adaptive step size integrator.

Detectors operate using both variable sampling and the bisection method to detect zero-

crossing. The velocity of the elevator is given by the triangular wave generator described

in Section 2.1 that it is also HFSS equivalent. This equivalence is central to component

integration and new integrators and detectors can be added as long as their equivalence to

the HFSS formalism can be defined. For example higher order methods can be easily

merged with the described models. The HFSS formalism provides thus a standard to

model interoperability for it does not depend on any particular implementation.

Figure 5 illustrates the results produced in CHAOSTALK a Smalltalk implementation of

the HFSS formalism. Elevator velocity has a maximum of 10 m/s and a minimum of −10

m/s. Time up and time down equal to 3 s. Elevator height is 2.5 m. We consider that

initially the elevator ground is at position 0 m and that the ball starts at position 1 m with

a null velocity. In every collision the ball looses 5% of the relative velocity (k = 0.95).

Figure 5 depicts ball and elevator positions. A third curve represents the ball height

relative to the elevator ground. The complex behavior of the ball depends on the relative

velocity at collision times and thus, sometimes the ball hits the elevator ceiling, while

other times, the ceiling is not reached.

-8

-6

-4

-2

0

2

4

6

8

10

0 2 4 6 8 10 12 14

time[s]

y[
m

]

Ball

Elevator

Ball-Elevator

Figure 5. Ball and elevator position.

The velocities of the elevator and the ball are depicted in Figure 6. The discontinuities in

ball velocity corresponding to the collisions are also represented in the figure.

-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10 12 14

time[s]

v[
m

/s
]

Ball

Elevator

Collision

Figure 6. Ball and elevator velocity.

Simulation was performed using a variable step numerical integrator whose steps are

independent and change accordingly to the local error. Figure 7 represents the time steps

taken by the integrating that computes ball position.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14

time[s]

tim
e

st
ep

[s
]

Figure 7. Time steps for ball position integrator.

Small time steps are used after collisions so the third order integrator can operate.

Between collisions the time steps can be quit large keeping, however, the local truncation

error within prescribed bounds. The possibility to change the integration step can lead to

more efficient integration for in general the integrators will achieve the same prescribed

accuracy using different step sizes.

4. HYBRID DYNAMIC STRUCTURE SYSTEMS

The hybrid systems considered so far have a static structure. We consider now the bottle

filling system of Figure 8 that is modeled as a hybrid system with a dynamic structure.

F

S

B
B

Figure 8. Bottle filling system.

The filling system is composed by the filler F and the detector D. Bottles are inserted

bellow the filler by a conveyor. When the bottle arrives its capacity is read and the filler

starts to fill the bottle. The scale below the bottle senses the bottle volume and signals

when the bottle is filled. When this happens the conveyor removes it from the filler and

brings a new empty bottle.

The HFSS model of the described system is represented in Figure 9. The filler is

modeled by component P, a 1st-order proportional controller. The scale is modeled by the

detector D. The bottle is represented by an active component that can give information

about its current volume. The conveyor is represented within the executive model that

can add or remove bottles to the system. When a bottle is currently being filled the model

structure is represented by Figure 9. The bottle is an integrator that receives as input the

filling rate from the controller P.

P

ZB

B

χ

D ZD

Zχ

ZF

Figure 9. Filling a bottle.

The detector D signals the executive when bottle is filled. The executive then removes

the bottle and the network structure becomes represented by Figure 10. After conveyor

transport time the executive inserts a new bottle and the model structure becomes again

represented by Figure 9. Structural changes correspond to the insertion of empty bottles

and the removal of filled bottles. Given that each bottle represents a differential equation,

structural changes correspond to modifications in the set of equations describing the

model.

F χ

D

Zχ

ZF

Figure 10. No bottle to fill.

The controller P is described in section 2 and it has a fixed sampling rate of 0.1 s.

Controller input function is given by

ZC = (max − b) + 0.05

where max is the bottle maximum volume, b is the bottle current volume and 0.05 cl/s is

the minimum filling rate. Controller output is depicted in Figure 11 for a sequence of 4

bottles. During the bottle transit time of 2 s the controller output is zero.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

time[s]

fil
l r

at
e[

cl
/s

]

Figure 11. Controller output.

The volume of a sequence of 4 bottles is given at Figure 12. This value is computed by a

hybrid integrator based on a variable time step 3rd order algorithm. This algorithm needs

to reinitialize every time the input has a discontinuity. Thus, time steps are reset

whenever the controller issues a discrete flow value. This situation occurs every 0.1 s, at

controller sampling points. This figure reflects also the dynamic structure model

approach employed. The absence of volume value indicates that currently no bottle is

being filled corresponding to a model without the integrator.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14
time[s]

x[
m

]

Figure 12. Bottle volume.

This example, although very simple, demonstrates the ability of the HFSS formalism to

represent models usually seen as belonging to different paradigms, namely: digital

control, hybrid numerical integrators, event detectors and dynamic structure models. The

HFSS approach permits to perceive these different paradigms as particular cases of

hybrid flow systems.

5. CONCLUSIONS

The HFSS formalism provides a general representation of hybrid systems in digital

computers based on a broad utilization of the sampling concept. Both time-varying and

multirate sampling can be used. Numerical integration methods based on multirate and

adjustable step can be described in the DEDF formalism. The equivalence between HFSS

and DEDF formalism permits to merge both models in the same network. The ability to

change network structure can lead to more efficient and more understandable models.

This feature is of crucial importance to represent very complex models. The HFSS

formalism provides a comprehensive framework for combining models built in different

paradigms. It is a general modeling formalism that can represent namely: dynamic

structure systems, hybrid flow systems, multirate numerical methods and multirate

sampling systems.

ACKNOWLEDGMENTS

This work was partially funded by the Portuguese Science and Technology Foundation

under project PRAXIS/EEI/14152/98.

REFERENCES

ALUR, R., GROSU, R. LEE, I. AND SOKOLSKY, O. 2001. Compositional Refinement for Hierarchical
Hybrid Systems. Hybrid Systems: Computation and Control, Proceedings of the Fourth International
Conference, (HSCC'01), Lecture Notes in Computer Science 2034, Springer, 33-48,.
ANTSAKLIS, P. J. 2000. A Brief Introduction to the Theory and Application of Hybrid Systems. Proceedings
of the IEEE, Vol. 88, No. 7, 879-887.
BARROS, F.J. 1997. Modeling Formalisms for Dynamic Structure Systems. ACM Transactions on Modeling
and Computer Simulation, Vol. 7, No. 4, 501-515.
BARROS, F.J. 1998. Hierarchical Testing of Dynamic Structure Models: A Practical Approach. Transactions of
the SCS, Vol. 15, No. 4, 181-189.
BARROS, F.J. 2000. A Framework for Representing Numerical Multirate Integration Methods. Proceedings of
the 2000 AI, Simulation and Planning in High Autonomy Systems, Tucson, AZ, USA, 149-154.
BARROS, F.J. 2001. Modeling and Simulation of Mobile Software Agents in Chaos. Proceedings of the
European Simulation Symposium/DEVS Workshop, Marseille, France, 605-610.
BARROS, F.J. 2002a. Modeling and Simulation of Dynamic Structure Heterogeneous Flow Systems.
Simulation: Transactions of the SCS, Vol. 78, No. 1, 18-27.
BARROS, F.J. 2002b. Towards a Theory of Continuous Flow Models. International Journal of General
Systems, Vol. 31, No. 1, 29-39.
BARROS, F.J. 2002c. Abstract Simulators for Dynamic Structure Hybrid Components. Proceedings of the AI,
Simulation and Planning in High Autonomy Systems, 71-77.
BARROS, F.J. 2003. Modeling and Simulation of Switched Systems: A Dynamic Structure Approach. Summer
Computer Simulation Conferece. Montreal, Canada. (Accepted for publication.)
BRANICKY, M.S. AND MATTSON, S.E. 1997. Simulation of Hybrid Systems. In Hybrid Systems IV, P.J.
ANTSAKLIS et. al., Eds., Vol. 1273, Lecture Notes in Computer Science, Springer, 31-56.
DESHPANDE, A., GOLLU, A. AND SEMENZATO, L. 1997. The Shift Programming Language and Run-
time System for Dynamic Networks of Hybrid Automata. In LNCS Proceedings of the 1997 NATO Workshop
on Discrete Event and Hybrid Systems, Springer.
ENGSTLER, C. AND LUBICH, C. 1997. Multirate Extrapolation Methods for Differential Equations with
Different Time Scales. Computing, Vol. 58, 173-185.
HOWE, R.M. 1998. Real-Time Multi-Rate Asynchronous Simulation with Single and Multiple Processors.
Proceedings of SPIE 12th Annual International Symposium on Aerospace/Defense Sensing, Simulation and
Controls: Enabling Technology for Simulation Science, Vol. 3369, Orlando, FL, USA, 331-342.
PRAEHOFER, H. 1991. System Theoretic Foundations for Combined Discrete-Continuous System Simulation,
Ph.D. Dissertation, Department of Systems Theory and Information Engineering, University of Linz.
ZEIGLER, B.P. 1976. Theory of Modelling and Simulation, Wiley.
ZEIGLER, B.P. 1984. Multifacetted Modeling and Discrete Event Simulation, Academic Press.
ZEIGLER, B.P. AND LEE, J.S. 1998. Theory of Quantized Systems: Formal Basis for DEVS/HLA Distributed
Simulation Environment. Proceedings of SPIE: Enabling Technology for Simulation Science, Vol. 3369,
Orlando, FL, USA, 49-58.

